Phase transitions in rare-earth ferrimagnets with surface anisotropy near the magnetization compensation point

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Theoretical model is proposed for calculating the phase H-T diagrams of a rare-earth ferrimagnet, considering the effects of each of the magnetic sublattices and surface anisotropy. Magnetic phase diagrams are numerically calculated. The presence of surface anisotropy leads to blurring of the second-order phase transition lines between the collinear and angular phases, displacement of the tricritical point, as well as the possibility of the formation of new phase transition lines.

作者简介

V. Yurlov

Moscow Institute of Physics and Technology; New Spintronic Technologies LLC

编辑信件的主要联系方式.
Email: yurlov.vv@phystech.edu
俄罗斯联邦, Dolgoprudny; Moscow

K. Zvezdin

Moscow Institute of Physics and Technology; New Spintronic Technologies LLC; Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: yurlov.vv@phystech.edu
俄罗斯联邦, Dolgoprudny; Moscow; Moscow

A. Zvezdin

Moscow Institute of Physics and Technology; New Spintronic Technologies LLC; Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: yurlov.vv@phystech.edu
俄罗斯联邦, Dolgoprudny; Moscow; Moscow

参考

  1. Žutić I., Fabian J., Das Sarma S. // Rev. Mod. Phys. 2004. V. 110. No. 7. P. 323.
  2. Bader S.D., Parkin S.S.P. // Annu. Rev. Condens. Matter Phys. 2010. V. 1. No. 1. P. 71.
  3. Huisman T.J., Ciccarelli C., Tsukamoto et al. // Appl. Phys. Lett. 2017. V. 110. No. 7. Art. No. 072402.
  4. Kirilyuk A., Kimel F.V., Rasing T. // Rev. Mod. Phys. 2010. V. 82. No. 3. P. 2731.
  5. Wilson R.B., Gorchon J., Yang Y. et al. // Phys. Rev. B. 2017. V. 95. No. 18. Art. No. 180409.
  6. Fert A., Piraux L. // J. Magn. Magn. Mater. 1999. V. 200. No. 1. P. 338.
  7. Srinivasan G., Rao B.U.M., Zhao J., Seehra M.S. // Appl. Phys. Lett. 1991. V. 59. No. 3. P. 372.
  8. Tabata H., Kawai T. // Appl. Phys. Lett. 1997. V. 70. No. 3. P. 321.
  9. Moreno R., Ostler T.A., Chantrell R.W., Chubykalo-Fesenko O. // Phys. Rev. 2017. V. 96. No. 1. Art. No. 014409.
  10. Kimel A.V., Li Mo // Nature Rev. Mater. 2019. V. 4. No. 3. P. 189.
  11. Stanciu C.D., Tsukamoto A., Kimel A.V. et al. // Phys. Rev. Lett. 2007. V. 99. No. 21. Art. No. 217204.
  12. Yurlov V.V., Zvezdin K.A., Kichin G.A. et al. // Appl. Phys. Lett. 2020. V. 116. No. 22. Art. No. 222401.
  13. Okamoto K., Miura N. // Physica B. Cond. Matter. 1989. V. 155. No. 1. P. 259.
  14. Tu Ch., Malmhäll R. // J. Magn. Magn. Mater. 1983. V. 35. No. 1. P. 269.
  15. Davydova M.D., Skirdkov P.N., Zvezdin K.A. et al. // Phys. Rev. Appl. 2020. V. 13. No. 3. Art. No. 034053.
  16. Davydova M.D., Zvezdin K.A., Becker J. et al. // Phys. Rev. B. 2019. V. 100. No. 6. Art. No. 064409.
  17. Becker J., Tsukamoto A., Kirilyuk A. et al. // Phys. Rev. Lett. 2017. V. 118. No. 11. Art. No. 117203.
  18. Sayko G.V., Utochkin S.N., Zvezdin A.K. // J. Magn. Magn. Mater. 1992. V. 113. No. 1. P. 194.
  19. Wei Jiang, Jun-Nan Ch., Ben M., Zan W. // Physica E. Low-Dimens. 2014. V. 61. P. 101.
  20. Noh Seung-Hyun, Na Wonjun, Jang Jung-Tak et al. // Nano Lett. 2012. V. 12. No. 7. P. 3716.
  21. Wei Jiang, Fan Zhang, Xiao-Xi Li et al. // Physica E. Low-Dimens. 2013. V. 47. P. 95.
  22. Slonczewski J.C. // J. Magn. Magn. Mater. 1992. V. 117. No. 3. P. 368.
  23. Zhang K., Fredkin D.R. // J. Appl. Phys. 1996. V. 79. No. 8. P. 5762.

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##