Influence of particle size on the microstructure and magnetic properties of nickel-zinc ferrite powder

Capa

Citar

Texto integral

Resumo

The influence of the dispersion of the particles of the synthesized nickel-zinc ferrite powder on its structural and magnetic properties is shown. Ferrite powder was produced using ceramic technology. The average particle size was varied using the mechanical activation method. According to X-ray diffraction analysis, laser diffraction and thermal analysis, regularities were established for the formation of the properties of nickel-zinc ferrite depending on the modes of mechanical activation.

Sobre autores

E. Nikolaev

National Research Tomsk Polytechnic University

Autor responsável pela correspondência
Email: nikolaev0712@tpu.ru
Rússia, Tomsk, 634050

E. Lysenko

National Research Tomsk Polytechnic University

Email: nikolaev0712@tpu.ru
Rússia, Tomsk, 634050

S. Bobuyok

National Research Tomsk Polytechnic University

Email: nikolaev0712@tpu.ru
Rússia, Tomsk, 634050

A. Surzhikov

National Research Tomsk Polytechnic University

Email: nikolaev0712@tpu.ru
Rússia, Tomsk, 634050

Bibliografia

  1. Guo J., Zhang H., He Z., Li S., Li Z. // J. Mater. Sci. Mater. Electron. 2018. V. 29. P. 2491.
  2. Kurian M., Thankachan S. // Open Ceram. 2021. V. 8. Art. No. 100179.
  3. Rani R., Mujasam Batoo K., Sharma P. et al. // Ceram. Int. 2021. V. 47. P. 30902.
  4. Gauns Dessai P.P., Verenkar V.S. // J. Therm. Analyt. Calorim. 2020. V. 142. P. 1399.
  5. Kumar R., Barman P.B., Singh R.R. // Mater. Today Commun. 2021. V. 27. Art. No. 102238.
  6. Bao Y., Wen T., Samia A.C. et al. // J. Mater. Sci. 2016. V. 51. P. 513.
  7. Mandle U.M., Tigote R.M., Lohar K.S., Shinde B.L. // Mater. Today. Proceed. 2021. V. 47. P. 1974.
  8. Hergt R., Dutz S., Muller R., Zeisberger M. // J. Phys. Cond. Matter. 2006. V. 18. P. 2919.
  9. Song J., Gao Yu., Tan G. et al. // Ceram. Int. 2022. V. 48. P. 22896.
  10. Bajorek A., Berger C., Dulski M. // J. Phys. Chem. Solid. 2019. V. 129. P. 1.
  11. Kaur H., Goyal V. Singh J. et al. // Micro Nano Lett. 2019. V. 14. No. 12. P. 1229.
  12. Pedro V.V.R., Alves T.E.P., Swapnalin J. et al. // Mater. Chem. Phys. 2022. V. 284. Art. No. 126072.
  13. Astafyev A.L., Lysenko E.N., Surzhikov A.P. et al. // J. Therm. Analyt. Calorim. 2020. V. 142. P. 1775.
  14. Yang P., Liu Zh., Qi H. et al. // Ceram. Int. 2019. V. 45. P. 13685.
  15. Sherstyuk D.P., Starikov A. Yu., Zhivulin V.E. et al. // Ceram. Int. 2022. V. 48. P. 18124.
  16. Hu J., Ma Y., Kan X. et al. // J. Magn. Magn. Mater. 2020. V. 513. Art. No. 167200.
  17. Kumar S., Kumar P., Singh V. et al. // J. Magn. Magn. Mater. 2015. V. 379. P. 50.
  18. Abu-El-Fadl A., Hassan A.M., Mahmoud M.H. // J. Magn. Magn. Mater. 2019. V. 471. P. 192.
  19. Filipović S., Obradović N., Marković S. et al. // Sci. Sinter. 2018. V. 50. P. 409.
  20. Rauch H., Cui H., Knight K.P. et al. // Add. Manufact. 2022. V. 52. Art. No. 100179.
  21. Roger J., Avenel M., Lapuyade L. // J. Eur. Ceram. Soc. 2020. V. 40. P. 1859.
  22. Lopez G.P., Silvetti S.P., Urretaa S.E. // J. Alloys Compounds. 2010. V. 505. P. 808.
  23. Sukmarani G., Kusumaningrum R., Noviyanto A. et al. // J. Mater. Res. Tech. 2020. V. 9. P. 8497.
  24. Tanna A.R., Joshi H.H. // Indian. J. Phys. 2016. V. 90. P. 981.
  25. Nikolaeva S.A., Lysenko E.N., Nikolaev E.V., Ghyngazov S.A. // J. Therm. Analyt. Calorim. 2023. V. 148. 1687.
  26. Kulkarni A.B., Mathad S.N. // Int. J. Self. Propag. High Temp. Synth. 2018. V. 27. P. 37.
  27. Nasrin S., Khan S.M., Matin M.A. et al. // J. Mater. Sci. Mater. Electron. 2019. V. 30. P. 10722.
  28. Nikolaev E.V., Lysenko E.N., Surzhikov A.P., Astafyev A.L. // J. Therm. Analyt. Calorim. 2023. V. 148. P. 1455.
  29. Hajalilou A., Hasim M., Abbasi M. et al. // J. Mater. Sci. Mater. Electron. 2015. V. 26. P. 7468.
  30. Nikolaev E.V., Lysenko E.N., Surzhikov A.P., Elkin V.D. // J. Therm. Analyt. Calorim. 2023. V. 148. P. 1581.
  31. Sherstyuk D.P., Starikov A. Yu., Zhivulin V.E. // Ceram. Int. 2021. V. 47. P. 12163.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).