Multiphoton ionization in a photonic crystal based on carbon nanotubes under the action of a few cycle optical pulse

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We considered a theoretical model of the interaction of a one-dimensional few cycles optical pulse with a nonlinear medium of semiconductor carbon nanotubes, which has a spatial modulation of the refractive index in the direction of pulse propagation (a one-dimensional photonic crystal). The results of the dependence of the rate of one- and two-photon ionization on the intensity of the short-wavelength pulse are shown. The effect of additional external electric and magnetic fields on the photoionization rate is considered.

Sobre autores

Yu. Dvuzhilova

Volgograd State University

Email: dvuzhilov.ilya@volsu.ru
Rússia, Volgograd

I. Dvuzhilov

Volgograd State University

Autor responsável pela correspondência
Email: dvuzhilov.ilya@volsu.ru
Rússia, Volgograd

M. Belonenko

Volgograd State University

Email: dvuzhilov.ilya@volsu.ru
Rússia, Volgograd

Bibliografia

  1. Yablonovitch E. // Phys. Rev. Let. 1987. V. 58. No. 20. P. 2059.
  2. John S. // Phys. Rev. Let. 1987. V. 58. No 23. P. 2486.
  3. Joannopoulos J.D., Meade R.D., Winn J.N., Photonic crystals. Oxford: Princeton University Press, 1995. 305 p.
  4. Crosignani B., Cutolo A., di Porto P. // J. Opt. Soc. Amer. B. 1982. V. 72. P. 515.
  5. Елецкий А.В. // УФН 1997. Т. 167. № 8. С. 945; Eletskii A.V. // Phys. Usp. 1997. V. 167. No. 8. P. 899.
  6. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of fullerenes and carbon nanotubes. San Diego: Academic Press, 1996. 965 p.
  7. Харрис П., Углеродные нанотрубы и родственные структуры. Новые материалы ХХI века. М.: Техносфера, 2003. 336 с.
  8. Belonenko M.B., Demushkina E.V., Lebedev N.G. // J. Russ. Laser Res. 2006. V. 27. No 5. P. 457.
  9. Белоненко М.Б., Демушкина Е.В., Лебедев Н.Г. // ФТТ. 2008. Т. 50. № 2. С. 368; Belonenko M.B., Demushkina E.V., Lebedev N.G. // Phys. Solid State. 2008. V. 50. No. 2. P. 383.
  10. Couairona A., Mysyrowicz A. // Phys. Reports. 2007. V. 441. P. 47.
  11. Белоненко М.Б., Невзорова Ю.В. // Изв. РАН. Сер. физ. 2014. Т. 78. № 12. С. 1626; Belonenko M.B., Nevzorova J.V. // Bull. Russ. Acad. Sci. Phys. 2014. V. 78. No. 12. P. 1333.
  12. Zhukov A.V., Bouffanais R., Belonenko M.B. et al. // EPJ D. 2015. V. 69. No. 5. P. 129.
  13. Zhukov A.V., Bouffanais R., Belonenko M.B. et al. // Appl. Phys. B. 2017. V. 123. No. 7. P. 196.
  14. Dvuzhilova Y.V., Dvuzhilov I.S., Belonenko M.B. // J. Nano. Electronic Phys. 2021. V. 13. No 1. P. 1.
  15. Tans S.J., Devoret M.H., Dai H. et al. // Nature. 1997. V. 386. P. 474.

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies