Study of the geometry and physical characteristics of FeNi nanowires used in ferrofluids

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method for synthesizing a magnetic fluid with ferromagnetic nanowires based on silicone oil is described, and a magnetorheological effect is demonstrated. The physical characteristics of the resulting ferrophase were studied using optical and scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray phase analysis. The size of the nanowires was measured by dynamic light scattering, for which the conditions for stabilizing ferromagnetic wires in an aqueous solution by coating with polyvinylpyrrolidone were selected.

Sobre autores

Y. Filippova

Moscow State Pedagogical University; Lomonosov Moscow State University

Autor responsável pela correspondência
Email: yufi26@list.ru
Russia, 119991, Moscow; Russia, 119991, Moscow

A. Papugaeva

Moscow State Pedagogical University

Email: yufi26@list.ru
Russia, 119991, Moscow

D. Panov

National Research University Higher School of Economics; Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences

Email: yufi26@list.ru
Russia, 101000, Moscow; Russia, 117342, Moscow

E. Kozhina

Lebedev Physical Institute of the Russian Academy of Sciences, Branch in Troitsk

Email: yufi26@list.ru
Russia, 108840, Moscow

I. Razumovskaya

Moscow State Pedagogical University

Email: yufi26@list.ru
Russia, 119991, Moscow

S. Bedin

Moscow State Pedagogical University; Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences; Lebedev Physical Institute of the Russian Academy of Sciences, Branch in Troitsk

Email: yufi26@list.ru
Russia, 119991, Moscow; Russia, 117342, Moscow; Russia, 108840, Moscow

Bibliografia

  1. Socoliuc V., Avdeev M.V., Kuncser V. et al. // Nanoscale. 2022. V. 14. No. 13. P. 4786.
  2. Kole M., Khandekar S. // J. Magn. Magn. Mater. 2021. V. 537. Art. No. 168222.
  3. Bangxiang C., Yanhe Z., Jie Z., Hegao C. // Proc. IEEE Conf. Robot. Biomimet. (Zhuha, 2015). P. 511.
  4. Закипим Р.Г., Смерек Ю.Л. // Наука и иннов. технол. 2005. № 43. С. 100.
  5. Вайсберг Л.А., Кононов О.В., Устинов И.Д. Основы геометаллургии. СПб: ООО “Русская коллекция СПб”, 2020. 376 с.
  6. Racca L., Cauda V. // Nano-Micro Lett. 2021. V. 13. P. 1.
  7. Liu X., Zhang Y., Wang Y., Zhu W. et al. // Theranostics. 2020. V. 10. No. 8. P. 3793.
  8. Włodarczyk A., Gorgoń S., Radoń A., Bajdak-Rusinek K. // Nanomaterials. 2022. V. 12. No. 11. P. 1807.
  9. Mukhtar A., Wu K., Cao X. // Nanotechnology. 2020. V. 31. No. 43. Art. No. 433001.
  10. Такетоми С., Тикадзуми С. Магнитные жидкости. М.: Мир, 1993. 272 с.
  11. Загорский Д.Л., Долуденко И.М., Каневский В.М. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 8. С. 1090; Zagorskiy D.L., Doludenko I.M., Kanevsky V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V 85. No. 8. P. 848.
  12. Genc S., Derin B. // Curr. Opin. Chem. Engin. 2014. V. 3. P. 118.
  13. Li L., Li D., Wang L., Liang Z., Zhang Z. // J. Magn. Magn. Mater. 2023. Art. No. 171077.
  14. Филиппова Ю.А., Бижецкий А.С., Папугаева А.В. и др.// Изв. РАН. Сер. физ. 2023. Т. 87. № 10. С. 1452; Filippova Y.A., Bizhetsky A.S., Papugaeva A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 10. P. 1483.
  15. Прокопьева T.A., Данилова В.A., Канторович С.С. // ЖЭТФ. 2011. Т. 140. № 3. С. 499.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (171KB)
4.

Baixar (51KB)
5.

Baixar (2MB)
6.

Baixar (33KB)

Declaração de direitos autorais © Ю.А. Филиппова, А.В. Папугаева, Д.В. Панов, Е.П. Кожина, И.В. Разумовская, С.А. Бедин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies