Fabrication of GRIN microstructures by two-photon lithography

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The method of two-photon lithography is used to fabricate GRIN microstructures. Test rectangular structures with sizes 25 × 25 × 3 micrometers were used with varying laser intensity by linear or gaussian distribution in one dimension. The resulting refractive index has been tuned in the range of 0.03. The suggested method can be applied to produce arbitrarily shaped 3D GRIN micro-optical elements.

Sobre autores

I. Soboleva

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

V. Bessonov

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

A. Fedyanin

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

M. Aparin

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

T. Baluyan

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

M. Sharipova

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

M. Sirotin

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

E. Lyubin

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

Bibliografia

  1. Gomez-Reino C., Perez M., Bao C. Gradient-index optics: fundamentals and applications. Springer, 2002. 239 p.
  2. Hwang Y., Phillips N., Dale E.O. et al. // Opt. Express. 2022. V. 30. No. 8. P. 12294.
  3. Gomez-Reino C., Perez M.V., Bao C., Flores-Arias T.M. // Laser Photon. Rev. 2008. V. 2. No. 3. P. 203.
  4. Kundal S., Bhatnagar A., Sharma R. Optical and wireless technologies, Springer, 2022. 443 p.
  5. Pickering M.A., Taylor R.L., Moore D.T. // Appl. Opt. 1986. V. 25. No. 19. P. 3364.
  6. Ohmi S., Sakai H., Asahara Y. et al. // Appl. Opt. 1988. V. 27. No. 3. P. 496.
  7. Sinai P. // Appl. Opt. 1971. V. 10. No. 1. P. 99.
  8. Liu J.H., Yang P.C., Chiu Y.H. // J. Polym. Sci. A. 2006. V. 44. No. 20. P. 5933.
  9. Liu J.H., Chiu Y.H. // Opt. Lett. 2009. V. 34. No. 9. P. 1393.
  10. Mingareev I., Kang M., Truman M. et al. // Opt. Laser Technol. 2020. V. 126. Art. No. 106058.
  11. Dylla-Spears R., Yee T.D., Sasan K. et al. // Sci. Advances. 2020. V. 6. No. 47. Art. No. eabc7429.
  12. Mao M., He J., Li X. et al. // Micromachines. 2017. V. 8. No. 4. P. 113.
  13. Sharipova M.I., Baluyan T.G., Abrashitova K.A. et al. // Opt. Mater. Express. 2021. V. 11. No. 2. P. 371.
  14. Zhou X., Hou Y., Lin J. // AIP Advances. 2005. V. 5. No. 3. Art. No. 030701.
  15. Ocier R.C., Richards C.A., Bacon-Brown D.A. et al. // Light Sci. Appl. 2020. V. 9. Art. No. 196.
  16. Žukauskas A., Matulaitienė I., Paipulas D. et al. // Laser Photon. Rev. 2015. V. 9. No. 6. P. 706.
  17. Pertoldi L., Zega V., Comi C., Osellame R. // J. Appl. Phys. 2020. V. 128. No. 17. Art. No. 175102.
  18. Drexler W., Fujimoto J.G. Optical coherence tomography. Technology and applications. Springer, 2008. 1327 p.
  19. Sirotin M.A., Romodina M.N., Lyubin E.V. et al. // Biomed. Opt. Express. 2022. V. 13. No. 1. P. 14.
  20. Safronov K.R., Gulkin D.N., Antropov I.M. et al. // ACS Nano. 2020. V. 14. No. 8. P. 10428.
  21. Safronov K.R., Bessonov V.O., Akhremenkov D.V. et al. // Laser Photon. Rev. 2022. V. 16. No. 4. Art. No. 2100542.
  22. Giessibl F.J. // Rev. Mod. Phys. 2003. V. 75. No. 3. P. 949.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (341KB)
3.

Baixar (60KB)
4.

Baixar (918KB)
5.

Baixar (949KB)

Declaração de direitos autorais © М.Д. Апарин, Т.Г. Балуян, М.И. Шарипова, М.А. Сиротин, Е.В. Любин, И.В. Соболева, В.О. Бессонов, А.А. Федянин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies