Photoinjector complex in IAP RAS: design parameters and current state of realization

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The calculated parameters of the photoinjector electron accelerator currently being implemented at the Institute of Applied Physics are presented, and the current state of work is described. The complex provides a step-by-step increase of the average energy of particles in dense electron bunches up to 20 MeV, which opens possibilities for the implementation on its basis of a wide class of electromagnetic radiation sources.

Sobre autores

N. Peskov

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: peskov@ipfran.ru
Russia, 603950, Nizhny Novgorod

A. Afanasiev

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: peskov@ipfran.ru
Russia, 603950, Nizhny Novgorod

I. Bandurkin

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: peskov@ipfran.ru
Russia, 603950, Nizhny Novgorod

A. Vikharev

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: peskov@ipfran.ru
Russia, 603950, Nizhny Novgorod

A. Gorbachev

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: peskov@ipfran.ru
Russia, 603950, Nizhny Novgorod

K. Mineev

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: peskov@ipfran.ru
Russia, 603950, Nizhny Novgorod

Yu. Oparina

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: peskov@ipfran.ru
Russia, 603950, Nizhny Novgorod

A. Savilov

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: peskov@ipfran.ru
Russia, 603950, Nizhny Novgorod

Bibliografia

  1. Palmer D.T. // AIP Conf. Proc 1997. V. 413. No. 1. P. 155.
  2. Carlsten B.E. // Part. Accel. 1995. V. 49. P. 27.
  3. Bandurkin I.V., Kuzikov S.V., Savilov A.V. // Appl. Phys. Lett. 2014. V. 105. No. 7. Art. No. 073503.
  4. Balal N., Bandurkin I.V., Bratman V.L. et al. // Appl. Phys. Lett. 2015. V. 107. No. 16. Art. No. 163505.
  5. Bandurkin I.V., Oparina Yu.S., Savilov A.V. // Appl. Phys. Lett. 2017. V. 110. No. 26. Art. No. 263508.
  6. Bandurkin I.V., Kurakin I.S., Savilov A.V. // Phys. Rev. Accel. Beams. 2017. V. 20. No. 2. Art. No. 020704.
  7. Oparina Yu.S., Savilov A.V., Pershin D.S., Bandurkin I.V. // J. Phys. Conf. Ser. 2018. V. 1135. No. 1. Art. No. 012018.
  8. Bandurkin I.V., Oparina Yu.S., Osharin I.V., Savilov A.V. // Phys. Plasm. 2019. V. 26. No. 11. Art. No. 113105.
  9. Pérez Quintero K.J., Antipov S., Sumant A.V. et al. // Appl. Phys. Lett. 2014. V. 105. No. 12. Art. No. 123103.
  10. Chen G., Spentzouris L., Jing Ch. et al. // Appl. Phys. Lett. 2020. V. 117. No. 17. Art. No. 171903.
  11. Davis P., Clayton C., Hairapetian G. et al. // Proc. Internat. Conf. Particle Accelerators. (Washington, 1993). P. 2976.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (60KB)
3.

Baixar (956KB)
4.

Baixar (86KB)

Declaração de direitos autorais © Н.Ю. Песков, А.В. Афанасьев, И.В. Бандуркин, А.А. Вихарев, А.М. Горбачев, К.В. Минеев, Ю.С. Опарина, А.В. Савилов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies