Research of light diffraction on electrically controlled multiplexed multilayer inhomogeneous holographic diffraction structures based on the photopolymerizing compositions with nematic liquid crystals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We presented the developed analytical model of optical radiation diffraction on multiplexed multilayer inhomogeneous diffraction structures formed by the holographic method in photopolymerizing compositions with nematic liquid crystals having smooth optical heterogeneity in the thickness of the layers. By numerical calculation, it was shown that when using an applied electric field with different polarities to the diffraction layers, as well as varying the azimuth of the polarization of the reading beam, the angular selectivity of the diffracted beam can be transformed with a significant shift in angular selectivity, which makes it possible to increase the spectral bandwidth by 4 times compared to conventional multilayer diffraction structures.

About the authors

S. N. Sharangovich

Tomsk State University of Control and Radioelectronics Systems

Author for correspondence.
Email: shr@tusur.ru
Russian Federation, Tomsk

V. O. Dolgirev

Tomsk State University of Control and Radioelectronics Systems

Email: shr@tusur.ru
Russian Federation, Tomsk

D. S. Rastrygin

Tomsk State University of Control and Radioelectronics Systems

Email: shr@tusur.ru
Russian Federation, Tomsk

References

  1. Malallah R., Li H., Qi Y. et al. // J. Opt. Soc. Amer. A. 2019. V. 36. No. 3. P. 320.
  2. Malallah R., Li H., Qi Y. et al. // J. Opt. Soc. Amer. A. 2019. V. 36. No. 3. P. 334.
  3. Pen E.F., Rodionov M.Yu., Chubakov P.A. // Optoelectron. Instrumen. Data Process. 2017. V. 53. P. 59.
  4. Пен Е.Ф., Родионов М.Ю. // Квант. электрон. 2010. Т. 40. № 10. С. 919; Pen E.F., Rodionov M.Yu.// Quantum Electron. 2010. V. 40. No. 10. P. 919.
  5. Nordin G.P., Johnson R.V. // J. Opt. Soc. Amer. A. 1992. V. 9. No. 12. P. 2206.
  6. Didnik D.I., Semkin A.O., Sharangovich S.N. // J. Phys. Conf. Ser. 2021. V. 1745. Art. No. 012018.
  7. Шарангович С.Н., Долгирев В.О. // Изв. РАН. Сер. физ. 2022. Т. 86. № 1. С. 35; Sharangovich S.N., Dolgirev V.O. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 1. P. 18.
  8. Шарангович С.Н., Долгирев В.О. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 12; Sharangovich S.N., Dolgirev V.O. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 7.
  9. Yan X., Wang X., Chen Y. et al // Appl. Phys. 2019. V. 125. Art. No. 67.
  10. Yan X., Gao L., Yang X., Dai Y. // Opt. Express. 2014. V. 22. No. 21. P. 26140.
  11. Казанский Н.Л., Хонина С.Н., Карпеев С.В., Порфирьев А.П. // Квант. электрон. 2020. Т. 50. № 7. С. 629; Kazanskiy N.L., Khonina S.N., Karpeev S.V., Porfirev A.P. // Quantum Electron. 2020. V. 50. No. 7. P. 629.
  12. Kudryashov S.I. // Appl. Surf. Sci. 2019. V. 484. P. 948.
  13. Pavlov D. // Opt. Let. 2019. V. 44. No. 2. P. 283.
  14. Yan Aimin, Zhi Liren, Liu Yanan et al. // J. Opt. Soc. Amer. A. 2009. V. 26. No. 1. P. 135.
  15. Устюжанин С.В., Шарангович С.Н. // Докл. ТУСУР. 2007. № 2. С. 192.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies