Application of various influences to obtain isolated or oriented nanoparticles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Heterostructural nanowires with alternating copper and nickel layers were obtained by matrix synthesis, then were cut into cylindrical magnetic nanoparticles of calibrated sizes. For their use in medicine, the tasks of their separation (overcoming agglomeration) and spatial orientation for targeted drug delivery and hyperthermia, respectively, were solved.

About the authors

I. M. Doludenko

Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences; National Research University “Higher School of Economics”

Author for correspondence.
Email: doludenko.i@yandex.ru
Russia, 119333, Moscow; Russia, 101000, Moscow

D. R. Khairetdinova

Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences; National University of Science and Technology “MISIS”

Email: doludenko.i@yandex.ru
Russia, 119333, Moscow; Russia, 119049, Moscow

D. L. Zagorsky

Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences

Email: doludenko.i@yandex.ru
Russia, 119333, Moscow

A. Rizvanova

Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences; National University of Science and Technology “MISIS”

Email: doludenko.i@yandex.ru
Russia, 119333, Moscow; Russia, 119049, Moscow

A. E. Muslimov

Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences

Email: doludenko.i@yandex.ru
Russia, 119333, Moscow

V. M. Kanevsky

Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences

Email: doludenko.i@yandex.ru
Russia, 119333, Moscow

L. V. Panina

National University of Science and Technology “MISIS”

Email: doludenko.i@yandex.ru
Russia, 119049, Moscow

References

  1. Chakavarti S.K., Vetter J. // Nucl. Instrum. Meth. Phys. Res. B. 1991. V. 62. No. 1. P. 109.
  2. Martin S. // Science. 1994. V. 268. No. 5193. P. 1961.
  3. Vazquez M. Magnetic nano- and microwires: design, synthesis, properties and applications. Elsevier: Woodhead Publishing, 2015. 815 p.
  4. Lupu N. Electrodeposited nanowires and their applications. Croatia: InTech, 2010. 236 p.
  5. Oleinikov V.A., Zagorski D.L., Bedin S.A. et al. // Radiat. Meas. 2008. V. 43. Art. No. S635.
  6. Панов Д.В., Бычков В.Ю., Тюленин Ю.П. и др. // Поверхность. Рентген., cинхротрон., нейтрон. иссл. 2021. № 12. С. 12; Panov D.V., Bichkov V. Yu., Tulenin Yu.P. et al. // J. Surf. Inv. X-ray Synchrotron Neutron Tech. 2022. V. 15. No. 6. P. 1264.
  7. Fert A., Piraux L. // JMMM. 1999. V. 200. No. 1–3. P. 338.
  8. Гуляев Ю.В., Чигарев С.Г., Панас А.И. и др. // ПЖТФ. 2019. Т. 45. № 6. С. 27. Gulyaev Yu.V., Chigarev S.G., Panas A.I. et al. // Tech. Phys. Lett. 2019. V. 45. No. 3. P. 271.
  9. Kumar C.S., Mohammad F. // Adv. Drug Deliv. Rev. 2011. V. 63. No. 9. P. 789.
  10. Ortega D., Pankhurst Q.A. Magnetic hyperthermia, in nanoscience. V. 1. Nanostructures through chemistry. Cambridge: Royal Society of Chemistry, 2013. P. 60.
  11. Alonso J., Khurshid H., Sankar V. et al. // J. Appl. Phys. 2015. V. 117. No. 15. Art. No. 17D113.
  12. Choi D.S., Park J., Kim S. et al. // J. Nanosci. Nanotechnol. 2008. V. 8. No. 3. P. 2323.
  13. Nana A.B.A., Marimuthu T., Kondiah P.P.D. et al. // Cancers. 2019. V. 11. No. 12. Art. No. 1956.
  14. Chen Y., Harpel A., Stadler B.J.H. // AIP Advances. 2022. V. 12. No. 3. Art. No. 035007.
  15. Moreno J.A., Bran C., Vazquez M., Kosel J. // IEEE Trans. Magn. 2021. V. 57. No. 4. Art. No. 800317.
  16. Ефремова М.В., Мажуга А.Г., Головин Ю.И., Клячко Н.Л. // Природа. 2016. № 7. С. 3.
  17. Долуденко И.М., Михеев А.В., Бурмистров И.А. и др. // ЖТФ. 2020. Т. 90. № 9. С. 1435; Doludenko I.M., Mikheev A.V., Burmistrov I.A. et al. // Tech. Phys. 2020. V. 65. No. 9. P. 1377.
  18. Жигалина О.М., Долуденко И.М., Хмеленин Д.Н и др. // Кристаллография. 2018. Т. 63. № 3. С. 455; Zhigalina O.M., Doludenko I.M., Khmelenin D.N. et al. // Crystallography Rep. 2018. V. 63. No. 3. P. 480.
  19. Долуденко И.М., Загорский Д.Л., Трушина Д.Б., Бурмистров И.А. Способ получения наностержней никеля с регулируемым аспектным отношением. Пат. РФ № 2724264, кл. C25C 1/08, B82B 3/00. 2020.
  20. Yao H., Xie L., Cheng Y. et al. // Mater. Des. 2017. V. 123. No. 5. P. 165.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (1MB)

Copyright (c) 2023 И.М. Долуденко, Д.Р. Хайретдинова, Д.Л. Загорский, А. Ризванова, А.Э. Муслимов, В.М. Каневский, Л.В. Панина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies