
ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, 2025, том 89, № 1, с. 63–69

УДК 548.735.6

(2+1)D СОЛИТОННЫЕ ПАРЫ В ПЛОСКОМ
КВАДРАТИЧНО-НЕЛИНЕЙНОМ КРИСТАЛЛЕ

С НЕОДНОРОДНОСТЬЮ
© 2025 г. Б. С. Брянцев∗, А. А. Калинович

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский
государственный университет имени М. В. Ломоносова»

∗e-mail: brisbryantsev@mail.ru

Поступила в редакцию 06.09.2024 г.
После доработки 16.09.2024 г.
Принята в печать 30.09.2024 г.

Исследован процесс распространения и формирования импульсных пар
в квадратично-нелинейном кристалле с двумя волноводами при изменении параметров,
связанных с положением волноводов относительно друг друга, задержкой и соотношением
фаз между импульсами. Обнаружено изменение режима распространения импульсов при
сближении волноводов и зависимость характера взаимодействия между импульсами от начального
соотношения фаз.

Ключевые слова: оптические солитоны, квадратичная нелинейность, двумерные импульсы,
неоднородность, нелинейная оптика

DOI: 10.31857/S0367676525010115, EDN: DBAFIE

ВВЕДЕНИЕ
Одной из наиболее интригующих областей оп-

тических исследований является нелинейная оп-
тика, где солитоны занимают особое место. Оп-
тический солитон представляет собой уединен-
ный лазерный импульс определенной длительно-
сти (от нано- до фемтосекунд) обладающий несу-
щей частотой видимого диапазона и способный
распространяться в нелинейной диспергирующей
среде без изменения своей формы на большие рас-
стояния. Особый интерес вызывают оптические
солитоны в керровской среде, которая описывает-
ся нелинейным уравнением Шредингера (НУШ)
обладающим солитонным решением [1]. Световые
пули или многомерные солитоны в однородной
керровской среде испытывают коллапс самофоку-
сировки при превышении определенного порога,
связанного с амплитудой импульсов. В частности,
двумерное НУШ приводит к возникновению так
называемого солитона Таунса [2], который являет-
ся вырожденным в свободном пространстве в том
смысле, что он возникает только при одном зна-
чении энергии. С физической точки зрения Та-
унсовский солитон представляет собой нестабиль-
ное состояние, которое разделяет два режима рас-
пространения света: расплывание импульса-пучка,
вызванное дифракцией, и его неограниченная са-
мофокусировка из-за нелинейности [3, 4]. Это по-

казывает, что нелинейность важна для образования
солитонов, но не гарантирует их устойчивость.

Удалось найти множество конфигураций опти-
ческих сред, в которых солитоны стабильны. Эти
конфигурации включают в себя материалы, учи-
тывающие более высокие порядки нелинейности
и дисперсии [5], среды с комбинированным типом
нелинейности [6], а также среды с неоднородно-
стями, которые могут компенсировать дифракци-
онное расплывание [7]. Солитоны также удалось
получить в искусственной оптической среде, опи-
сываемой дробным уравнением Шредингера [8].
Некоторым результатам, связанным с рассмотре-
нием дробных сред, посвящен мини-обзор [9]. Так
как неограниченная самофокусировка является ос-
новным препятствием для формирования солито-
нов в керровской среде, были также рассмотре-
ны квадратичные нелинейные среды [10], в кото-
рых коллапс отсутствует. Другим интересным под-
ходом к получению солитонов является учет дис-
персии связи между плоскими волноводами с кер-
ровской нелинейностью в качестве аналога спин-
орбитальной связи в бозе-эйнштейновском кон-
денсате [11].

В нашей работе мы рассмотрели квадратично-
нелинейную среду с двумя плоскими волновода-
ми. С помощью изменения параметров, связанных
с положением и размером волноводов, а также из-
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менением параметров пробного решения, мы хо-
тели добиться стабильного распространения им-
пульсной пары на большие расстояния или, дру-
гими словами, получить солитонное решение. Как
уже было упомянуто выше, мы рассматриваем рас-
пространение пары импульсов пучков, начальны-
ми параметрами которых можно управлять. Рас-
смотрение проводится в режиме генерации вто-
рой гармоники (ГВГ) при нормальной дисперсии,
где каждому импульсу из пробного решения от-
веден собственный волновод со специально опре-
деленными характеристиками. Связь между ними
осуществляется за счет части энергии импульсов-
пучков, которая может проникать в область между
волноводами. Данная работа опирается на резуль-
таты ранее проведенных исследований [12, 13].

ОСНОВНЫЕ УРАВНЕНИЯ
Описание процесса генерации второй опти-

ческой гармоники проводится в квазиоптическом
приближении с зависимостью линейной воспри-
имчивости среды от координаты χω(𝑟⟂) в виде:
χ
(0)
ω [1 + 𝑓ω(𝑟⟂)], где 𝑟⟂ — радиус-вектор, перпенди-

кулярный центральной оси волновода, χ(0)ω — ли-
нейная восприимчивость среды в центре попереч-
ного сечения одного из волноводов, а 𝑓ω(𝑟⟂)— без-
размерная функция, которая описывает профиль
волновода. В этом случае система уравнений для
описания процесса ГВГ в системе из двух планар-
ных волноводов принимает вид:
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Здесь 𝐴1,2 — амплитуда огибающей первой и вто-
рой гармоники, соответственно, τ — локальное
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где 𝑡 — время, 𝑧 — направление распро-
странения, 𝑥 — поперечная координата,
𝑣
(ω,2ω)
g — групповые скорости для соответству-

ющих гармоник в центре волновода, причем
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g . Коэффициент βω,2ω от-

вечает за дисперсию групповой скорости в центре
волновода, за влияние нелинейности отвечают
αω =
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χ(2)(2ω,−ω), χ(2)(ω,−ω) — коэффициенты нели-

нейной восприимчивости второго порядка
в центре волновода. Волновые числа для пер-
вой второй гармоник представлены 𝑘1 = 𝑘(ω)
и 𝑘2 = 𝑘(2ω). Дифракция описывается вторым
слагаемым в правой части каждого из уравнений,
где 𝑛(0)2

ω,2ω(𝑥) = 1 + (𝑛(0)2
ω,2ω − 1) (1 + 𝑓ω,2ω(𝑥))— пока-

затели преломления гармоник, 𝑐 — скорость света
в вакууме. Первое слагаемое в правой части обоих
уравнений отвечает за влияние неоднородности,
в нем 𝑔1,2(𝑥):
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где 𝑓ω,2ω(𝑥) — одномерная безразмерная функция,
определяющая профиль волновода. В дальней-
шем мы будем рассматривать случай группового
и фазового синхронизма, поэтому 𝑣g = 𝑣

(2ω)
g = 𝑣

(ω)
g

и 2𝑘1 = 𝑘2.
Для проведения численного моделирования

систему требовалось обезразмерить, поэтому
были введены следующие безразмерные пара-
метры: 𝐴1,2 = 𝐴1,2𝐴in, 𝑧 = 𝑧𝑙nl, 𝑥 = 𝑥𝑅in, τ = ττin,
Δ𝑘 = Δ𝑘𝑙nl, 𝑙nl = (αω𝐴in)

−1, 𝑎ω,2ω = 𝑅in𝑎ω,2ω. 𝐴in —
пиковая амплитуда в центре одного из волноводов,
𝐿nl — нелинейная длина, равная расстоянию,
на котором происходит полная перекачка энер-
гии между гармониками, 𝑅in, τin — начальный
радиус и длительность импульса-пучка. Также
были введены безразмерные выражения для
коэффициентов из (1), отвечающих за дифрак-
цию, дисперсию, неоднородность, нелинейность:
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параметры, получим:
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Пробное решение, которое подавалось на вход
среды, выглядит следующим образом:
𝐴1(𝑧=0) = 𝐸11 exp (−(𝑥−𝑥w)

2
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𝐴2(𝑧=0) = 𝐸21 exp (−(𝑥−𝑥w)
2
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2
+𝑖φ21) +
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Здесь 𝐸11,12 и 𝐸21,22 определяют начальные значе-
ния амплитуды для пучков на основной и удво-
енной частотах, соответственно. Параметры φ11,12
и φ21,22 — задают начальное соотношения фаз меж-
ду импульсами, а τ10,20 за временную задержку меж-
ду ними. За положение центров волноводов отвеча-
ет параметр 𝑥w, который также входит в выражение
для функции профилей волноводов (3).

Вид волноводной функции (3) обеспечива-
ет минимумы показателя преломления волновода
вблизи 𝑥 = ±𝑥w. Оптический пучок удерживается
вблизи центра волновода, однако его хвостовые ча-
сти проникают в зону между ними, обеспечивая
связь пар импульсов-пучков. Характерная ширина
волноводов равна 𝑎ω,2ω.

Численные расчеты проводятся на основе ме-
тода, разработанного в работе [12], который обес-
печивает сохранение интегралов движения, прису-
щих системе уравнений (2). Проверка сохранения
интегралов во время расчета гарантирует точность
результатов.

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО
МОДЕЛИРОВАНИЯ

Для исследования процесса формирования
и распространения импульсов-пучков в квадра-
тично-нелинейной среде с двумя планарными
волноводами нами было проведено численное
моделирование системы (2) с граничным услови-
ем (4). Распространение импульсов происходило
в режиме ГВГ, когда 𝐸21,22 = 0, то есть на вход
подавались только пучки основной частоты. Для
того чтобы проследить за влиянием начально-
го соотношения фаз на распространение пары
импульсов-пучков, мы изменяли φ11,12, при-
чем сигналы могли иметь как одинаковую фазу
(φ11 = φ12 = 0), так и различную, когда φ12 плавно
изменялось в диапазоне от 0 до π. Помимо этого,
сигналы могли иметь временную задержку между
собой, когда τ10 ≠ τ20.

Коэффициенты дифракции при расчете при-
нимались равными 𝐷x1 = 0.1, 𝐷x2 = 0.05. Диспер-
сионные коэффициенты были равны 𝐷τ1 = 0.05,
𝐷τ2 = 0.1, что соответствует нормальной дисперсии
(𝐷τ1,2 > 0). Коэффициент нелинейности положи-
ли равным γ = 0.5. Параметры, отвечающие за ха-
рактеристики волноводов, принимались равными
𝑎ω = 𝑎2ω = 2, 𝐷q1 = 10, 𝐷q2 = 10. Параметр, отвеча-
ющий за положение центров волноводов 𝑥w, мог
изменяться во время расчета. Значения безразмер-
ных параметров, задающих характеристики моде-
лируемой среды, оставались постоянными для всех
расчетов.

Основываясь на результатах работы [13], бы-
ло получено солитоноподобное решение для па-

ры импульсов-пучков. Данное решение не являют-
ся в точности солитонными, поскольку не облада-
ет постоянными характеристиками, но меняет свои
пространственные и временные размеры, а также
интенсивность периодически, что иногда называ-
ют «дыханием». Однако оно является локализован-
ным, так как большая часть интенсивности ограни-
чена в небольшой области пространства-времени.

Солитонная пара формируется не сразу,
а только после завершения процесса перекачки
энергии между основной и второй гармониками
в каждом волноводе, что примерно соответству-
ет прохождению парой сигналов расстояния,
равного 20 нелинейным длинам. Полученная
«дышащая» импульсная пара распространялась
на расстояние в 600 нелинейных длин с сохране-
нием пространственно-временной формы, что
можно пронаблюдать на рис. 1а. Профиль сиг-
нала на левой границе моделируемого кристалла
сохраняет свою форму и в конце дистанции рас-
пространения, но теряет в интенсивности, что
можно увидеть на рис.1г–1е. Однако основная
потеря интенсивности происходит на начальном
этапе, когда происходит перекачка энергии во вто-
рую гармонику, и кроме того, часть энергии, еще
не захваченная в солитон, отдаляется от основного
пучка. Сравнение профилей на дистанциях 𝑧 = 100
и 𝑧 = 200 (рис.1д,е) показывает, что на этом этапе
максимальная интенсивность не только не упала,
но и несколько возросла за счет фокусировки. Ана-
лиз пиковой интенсивности на рис.1а показывает,
что данное солитоноподобное решение в целом
сохраняется вплоть до 𝑧 = 600.

Также стоит отметить, что в области между
волноводами наблюдается ненулевой уровень
интенсивности на протяжении всей дистанции
распространения. Как было упомянуто ранее,
часть энергии просачивается сквозь стенки вол-
новода, что говорит о взаимодействии импульсов
в отдельных волноводах между собой. На рис.1б
и 1в показана зависимость положения простран-
ственного и временного центров пары импульсов-
пучков от дистанции распространения. Видно,
что на рис. 1в положение максимумов импульсов
вдоль оси вплоть до 𝑥 осциллирует с небольшой
амплитудой около центра волновода. Временные
максимумы вместе с распространением отдаляют-
ся от заданного начального положения, что значит,
что импульсы отталкиваются друг от друга.

На рис. 2 показаны данные расчетов для па-
ры импульсов, запущенных с задержкой τ10 = 0.5,
τ20 = −0.5, где в граничном условии постепенно
изменяется фаза импульса во втором волноводе
φ12 в диапазоне от 0 до π с шагом 0.1π. Измене-
ние фазы не влияет на дистанцию распростране-
ния, пара импульсов распространяется стабильно
на 600 нелинейных длин, как и в первом расчете для
сигналов с одинаковой фазой. Влияние начально-
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Рис. 1. Генерация пары связанных солитонов несинхронными (τ10 = −0.5, τ20 = 0.5) синфазными (φ11 = φ12 = 0) пуч-
ками основной частоты 𝐸11 = 0.5, 𝐸12 = 0.5, 𝐸21 = 0, 𝐸22 = 0. Пиковые интенсивности (а) основной частоты (черный
и красный для левого и правого волноводов соответственно) и второй гармоники (синий и зеленый для левого и пра-
вого волноводов соответственно). Поперечные профили пучков при τ = 0 основной частоты (красный) и второй гар-
моники (синий) для 𝑧 = 0 (г), 𝑧 = 100 (д), 𝑧 = 200 (е). Зависимость положений пространственного (б) и временного (в)
центров от дистанции распространения. Параметры волновода 𝑥w = 2, 𝑎ω = 𝑎2ω = 2, 𝐷q1 = 10, 𝐷q2 = 10. Коэффици-
енты дифракции 𝐷x1 = 0.1, 𝐷x2 = 0.05, коэффициенты дисперсии 𝐷τ1 = 0.05, 𝐷τ2 = 0.1, коэффициент нелинейности
γ = 0.5.

го соотношения фаз заключается в изменении ха-
рактера движения временных центров импульсов,
а также характера их взаимодействия, что можно
увидеть на рис. 2а и 2б. При постепенном увели-
чении фазы φ12 от 0 до π импульсная пара посте-

пенно переходит от взаимного отталкивания при
φ11 = φ12 = 0 к взаимному притяжению при φ11 = 0,
φ12 = π. В промежуточном режиме при φ12 ≈ 0.6π
временной центр осциллирует около положения
равновесия до 𝑧 = 300. После чего, в зависимости
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Рис. 2. Генерация пары связанных солитонов несинхронными (τ10 = −0.5, τ20 = 0.5) пучками основной частоты
𝐸11 = 0.5, 𝐸12 = 0.5, 𝐸21 = 0, 𝐸22 = 0. Пиковые интенсивности (а) основной частоты в правом волноводе и положение
временных центров импульсной пары (б) в зависимости от расстояния 𝑧 для разных начальных фаз. Пиковые интен-
сивности (в) пары импульсов основной частоты и положение их временных центров (г) для случаяφ11 = 0,φ12 = 0.6π.
Параметры волновода 𝑎ω = 𝑎2ω = 2,𝐷q1 = 10,𝐷q2 = 10. Коэффициенты дифракции𝐷x1 = 0.14,𝐷x2 = 0.05, коэффици-
енты дисперсии 𝐷τ1 = 0.05, 𝐷τ2 = 0.1, коэффициент нелинейности γ = 0.5.

от начального соотношения фаз и значения фазы
каждого импульса, временные центры импульсов
на основной частоте начинают отталкиваться, как
в случае с одинаковой фазой, но в данном случае
движение центров происходит с разными скоро-
стями (рис. 2в). У сигнала с меньшей начальной фа-
зой центр движется быстрее, в то время как центр
второго импульса движется медленнее. Момент на-
чала движения центров импульсов по временной
оси совпадает с завершением полупериода процес-
са перекачки энергии между импульсами, который
стал особенно выражен при подобранном соотно-
шении фаз (φ11 = 0, φ12) = 0.6π), что можно уви-
деть на рис. 2в и 2г. Стоит отметить, что времен-
ная задержка была введена для того, чтобы эффект
притягивания и отталкивания временных центров
импульсов можно было отчетливо наблюдать. При
синхронном запуске импульсов эффект сохраняет-
ся, но для рассматриваемых расстояний отклоне-
ние центров импульсов очень мало и станет замет-
ным только на достаточно большой дистанции рас-
пространения.

Результаты, полученные при исследовании вли-
яния положения волноводов на режим распро-
странения солитоноподобного решения, показаны
на рис. 3. С помощью изменения параметра 𝑥w,
который входит как в начальное решение (4), так
и в безразмерную функцию, задающую профиль
волновода (3), мы меняли положение центров гра-
диентных волноводов. На рис. 3 можно увидеть,
что при параметре 𝑥w = 1.9 (𝑎ω,2ω = 2) волноводы
начинают частично перекрываться, что увеличи-
вает влияние импульсов в разных волноводах друг
на друга. Это проявляется в увеличенной амплитуде
осцилляции пространственных центров импульсов
по сравнению с результатами для неперекрываю-
щихся волноводов при 𝑥w = 2.0. Энергия «хвостов»
импульсов, которая ранее просачивалась в область
между волноводами, начинает скапливаться в об-
ласти перекрытия, что можно увидеть на рис. 3в
на графиках для профилей сигналов при различ-
ных значениях дистанции распространения 𝑧. При
дальнейшем сближении волноводов амплитуда ос-
цилляций пространственных центров продолжает
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Рис. 3. Генерация пары связанных солитонов несинхронными (τ10 = −0.5, τ20 = 0.5) синфазными (ω11 = ω12 = 0) пуч-
ками основной частоты𝐸11 = 0.5,𝐸12 = 0.5,𝐸21 = 0,𝐸22 = 0. Пиковые интенсивности (а) основной частоты и положе-
ние пространственных центров (б) в зависимости от расстояния 𝑧 для 𝑥w = 1.8, 1.9, 2.0. Поперечные профили пучков
при τ = 0 и при 𝑥w = 1.9 для основной частоты в промежутке от 𝑧 = 20 до 𝑧 = 40 с шагом 𝑧 = 5 (в). Параметры вол-
новода 𝑎ω = 𝑎2ω = 2, 𝐷q1 = 10, 𝐷q2 = 10. Коэффициенты дифракции 𝐷x1 = 0.1, 𝐷x2 = 0.05, коэффициенты дисперсии
𝐷τ1 = 0.05, 𝐷τ2 = 0.1, коэффициент нелинейности γ = 0.5.

нарастать, и при достижении 𝑥w = 1.7 солитонопо-
добный режим нарушается: импульсная пара рас-
падается на расстоянии в 40 нелинейных длин.

ЗАКЛЮЧЕНИЕ
Таким образом, рассмотрен процесс формиро-

вания и распространения солитоноподобного ре-
шения в паре связанных оптических волноводов
в плоском квадратично-нелинейном кристалле при
изменении параметров, связанных с положением
центров волноводов и соотношением фаз меж-
ду импульсами. Было обнаружено, что от началь-
ного соотношения фаз зависит характер взаимо-
действия импульсов. При определенной началь-
ной разнице фаз (δφ = 0.6π) наблюдается перекач-
ка энергии между волноводами, которая занимает
около 600 нелинейных длин. Перекрывание волно-
водами друг друга (𝑥w = 1.9) усиливает связь между
волноводами, что также влияет на пространствен-
ное положение сигналов во время распростране-
ния, добавляя заметную осцилляцию центров им-

пульсов вдоль пространственной оси. Пиковая ин-
тенсивность при этом снижается, так как часть
энергии импульсов начинает просачиваться в об-
ласть перекрытия волноводами друг друга, задер-
живаясь в ней.
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(2+1)D soliton pairs in a planar quadratic nonlinear crystal with inhomogeneity
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The process of propagation and formation of pulse pairs in a quadratically nonlinear crystal with two
waveguides is investigated when parameters related to the position of the waveguides relative to each other,
delay and phase ratio between pulses change. A change in the pulse propagation mode during the approach
of waveguides and the dependence of the nature of the interaction between the pulses on the initial phase
ratio were found.
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