DETERMINING THE SPECTRAL AND DOSE CHARACTERISTICS OF PULSE-PERIODIC X-RAY RADIATION FROM A PLASMA ACCELERATOR

封面

如何引用文章

全文:

详细

The paper presents the results of measuring the spectral and dose characteristics of pulse-periodic X-ray radiation generated by a plasma accelerator. The device is based on the principle of electron autophasing in the oscillating electric field of a microwave cavity, implemented in the scenario of automatic maintenance of electron cyclotron resonance in a magnetic field that slowly increases in time in the interaction region (gyromagnetic autoresonance—GA). It was found that electrons of generated plasma bunches during acceleration reach energies of up to 0.5 MeV. Due to multiple acceleration and deceleration of electrons in the microwave field, hard X-ray radiation is generated, which is of interest for radiation technologies. It is shown that the bremsstrahlung of bunches has a pronounced anisotropy and spatial regions with its maximum output are experimentally determined. The measured average absorbed dose rate for biological tissue was 2 mGy/s. Conditions for increasing the accelerator’s bremsstrahlung power with an increase in the number of accelerated electrons and their energy are determined. The accompanying characteristic radiation of the plasma-forming gas and the accelerator’s structural elements facing the plasma is investigated.

作者简介

V. Andreev

Peoples’ Friendship University of Russia named after Patrice Lumumba

Moscow, Russia

A. Novitsky

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: temple18@mail.ru
Moscow, Russia

A. Niamanesh

Peoples’ Friendship University of Russia named after Patrice Lumumba

Moscow, Russia

D. Chuprov

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: chu_d@mail.ru
Moscow, Russia

参考

  1. Shvedunov V.I., Alimov A.S., Ermakov A.N., Kamanin A.N., Khankin V.V., Kurilik A.S., Ovchinnikova L.Yu., Pakhomov N.I., Shvedunov N.V., Yurov D.S., Shvedunov I.V., and Simonov A.S. // Radiation Physics and Chemistry. V. 159. P. 95. https://doi.org/10.1016/j.radphyschem.2019.02.044
  2. Дулатов А.К., Лемешко Б.Д., Михайлов Ю.В., Прокуратов И.А., Селифанов А.Н. // ВАНТ. Сер. Термоядерный синтез. 2016. Т. 39. В. 3. C. 66. https://doi.org/10.21517/0202-3822-2016-39-3-66-72
  3. Милантьев В.П. // УФН. Т. 183. С. 875. https://doi.org/10.3367/UFNe.0183.201308f.0875
  4. Golovanivsky K.S. // Physica Scripta. V. 22. P. 126.
  5. Андреев В.В., Чупров Д.В., Умнов А.М., Ильгисонис В.И., Грабовский Е.В., Зайцев В.И. Плазменный генератор тормозного излучения. Патент на изобретение №2488243 от 26.08.2013 г.
  6. Andreev V.V., Chuprov D.V., Ilgisonis V.I., Novitsky A.A., and Umnov A.M. // Physics of Plasmas. 2017. No. 24. 093518.
  7. Andreev V.V., Novitsky A.A., and Umnov A.M. // Physics of Plasmas. 2021. 28. No. 9. 092507.
  8. Alm B., Sakar E., Baltakesmez A., Han I., Sayyed M.I., and Demir L. // Radiation Physics and Chemistry. V. 166. 2020. Art. №108455. https://doi.org/10.1016/j.radphyschem.2019.108455
  9. Машкович В.П., Кудрявцева А.В. Защита от ионизирующих излучений. Справочник, 4-е изд., перераб. и доп. М.: Альянс, 2024. 496 с.
  10. Andreev V.V., Novitskii A.A., and Chuprov D.V. // Phys. At. Nuclei V. 82. P. 1404.
  11. Андреев В.В., Ильгисонис В.И., Новицкий А.А, Умнов А.М. // Физика плазмы. 2020. Т. 46. № 8. С. 685.
  12. Almond P.R., Biggs P.J., Bert M.C., Hanson W.F., Saifulhuq M., Nath R., and Rogers D. // Medical Physics. 1999. V. 26. No. 9. P. 1847.
  13. McEwen M., DeWerd L., Ibbott G., Followill D., Rogers D., Seltzer S., and Seuntjens J. // Medical Physics. 2014. V. 41. Art.№ 041501. https://doi.org/10.1118/1.4866223
  14. Andreo P., Burns D.T., Hohlfeld S., Huq M.S., Kanai T., Laitano F., Smith V., and Vynckier S. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water.: IAEA. 2001. P. 179.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).