Plasma Potential Fluctuations in a Reflex Discharge with Thermionic Cathode

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

One of the promising applications of low-temperature plasma in crossed electric and magnetic fields is plasma mass separation. To its implementation it is necessary to create a magnetized plasma with a given spatial distribution of the plasma potential. Plasma potential distribution determines the particle trajectories during separation. One of the difficulties that lie in the way of creating an efficient separator is the oscillations of the plasma potential resulting from the development of various types of instabilities. In the present work, fluctuations of the plasma potential in a reflex discharge with a thermionic cathode are studied. An analysis of the frequencies of plasma potential oscillations for magnetic fields in the range of 1–1.4 kG is presented. Measurements of the radial profiles of the root-mean-square deviation of the plasma potential are provided.

作者简介

M. Valinurov

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: valinurov.ma@phystech.edu
125412, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

A. Gavrikov

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: glizyakin@gmail.com
127412, Moscow, Russia

G. Liziakin

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: glizyakin@gmail.com
127412, Moscow, Russia

A. Oiler

Joint Institute for High Temperatures of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: glizyakin@gmail.com
127412, Moscow, Russia; 141700, Dolgoprudny, Russia

R. Timirkhanov

Joint Institute for High Temperatures of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: glizyakin@gmail.com
127412, Moscow, Russia

参考

  1. Kaganovich I.D., Smolyakov A., Raitses Y., Ahedo E., Mikellides I.G., Jorns B., Taccogna F., Gueroult R., Tsikata S., Bourdon A. et al. // Phys. Plasma. 2020. V. 27. P. 120601. https://doi.org/10.1063/5.0010135
  2. Gueroult R., Zweben S.J., Fisch N.J., Rax J.-M. // Phys. Plasmas. 2019. V. 26. P. 43511. https://doi.org/10.1063/1.5083229
  3. Choueiri E.Y. // Phys. Plasmas. 2001. V. 8. P. 1411.https://doi.org/10.1063/1.1354644
  4. Simon A. // Phys. Fluids. 1963. V. 6. P. 382. https://doi.org/10.1063/1.1706743
  5. Hoh F. C. // Phys. Fluids. 1963. V. 6. P. 1184.https://doi.org/10.1063/1.1706878
  6. Marusov N.A., Sorokina E.A., Ilgisonis V.I., Lakhin V.P. // Phys. Plasmas. 2019. V. 26. P. 90701. https://doi.org/10.1063/1.5111948
  7. Smolyakov A.I., Chapurin O., Frias W., Koshkarov O., Romadanov I., Tang T., Umansky M., Raitses Y., Kaganovich I.D., Lakhin V.P. // Plasma Phys. Control. Fusion. 2016. V. 59. P. 14041.
  8. Liziakin G., Antonov N., Smirnov V.S., Timirkhanov R., Oiler A., Usmanov R., Melnikov A., Vorona N., Kislen-ko S., Gavrikov A., Smirnov V.P. // J. Phys. D. Appl. Phys. 2021. V. 54. P. 414005.
  9. Смирнов В.П., Самохин В.П., Ворна Н.А., Гаври-ков А.В. // Физика плазмы. 2013. Т. 39. С. = Smir-nov V.P., Samokhin A.A., Vorona N.A., Gavrikov A.V. // Plasma Phys. Rep. 2013. V. 39. P. 456.https://doi.org/10.1134/S1063780X13050103
  10. Liziakin G., Antonov N., Usmanov R., Melnikov A., Timirkhanov R., Vorona N., Smirnov V.S., Oiler A., Kislenko S., Gavrikov A., Smirnov V.P. // Plasma Phys. Control. Fusion. 2021. V. 63. P. 032002.
  11. Hooper Jr. E.B. Advances in Electronics and Electron Physics. V. 27 / Ed. L. Marton, M. Claire. Academic Press. 1970. P. 295. https://doi.org/10.1017/S0022377821000829.
  12. Carlsson J., Kaganovich I., Powis A., Raitses Y., Romadanov I., Smolyakov A. // Phys. Plasmas. 2018. V. 25. P. 61201. https://doi.org/10.1063/1.5017467
  13. Powis A.T., Carlsson J.A., Kaganovich I.D., Raitses Y., Smolyakov A. // Phys. Plasmas. 2018. V. 25. P. 72110.https://doi.org/10.1063/1.5038733
  14. Kim J.Y., Jang J.Y., Choi J., Wang J., Jeong W.I., Elgar-hy M.A.I., Go G., Chung K.-J., Hwang Y.S. // Plasma Sources Sci. Technol. 2021. V. 30. P. 25011.
  15. Kemp R.F., Sellen Jr.J.M. // Rev. Sci. Instruments. 1966. V. 37. P. 455. https://doi.org/10.1063/1.1720213
  16. Murzaev Y., Liziakin G., Gavrikov A., Timirkhanov R., Smirnov V. // Plasma Sci. Technol. 2019. V. 21. P. 045401.https://doi.org/10.1088/2058-6272/aaf250

补充文件

附件文件
动作
1. JATS XML
2.

下载 (165KB)
3.

下载 (168KB)
4.

下载 (310KB)
5.

下载 (306KB)
6.

下载 (142KB)
7.

下载 (87KB)
8.

下载 (149KB)
9.

下载 (70KB)

版权所有 © М.А. Валинуров, А.В. Гавриков, Г.Д. Лизякин, А.П. Ойлер, Р.А. Тимирханов, 2023

##common.cookie##