Influence of Current and Interelectrode Gap on Characteristics of Longitudinal–Transverse Discharge in a Supersonic Airflow

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This work is devoted to the problem of stable operation of a longitudinal–transverse discharge in a supersonic flow and its parameters. A longitudinal–transverse discharge in an air flow with parameters M = 2, V ~ 500 m/s, Tg = 170 K, Pst = 22 kPa is considered. High-speed imaging and data acquisition were used to obtain data on the variation of the discharge length, current, and voltage over time. The main purpose of the work was to investigate the dynamics of DC discharge and to describe relations between its geometrical and electrical parameters. Experiments were aimed at obtaining detailed data on the influence of interelectrode distance and discharge current on discharge length and, consequently, on voltage and power release, as well as to determine typical breakdown frequencies depending of discharge parameters. The electrode fall voltage was determined.

作者简介

E. Perevoshchikov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: af@jiht.org
125412, Moscow, Russia

A. Firsov

Joint Institute for High Temperatures, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: valentin.bityurin@gmail.com
125412, Moscow, Russia

参考

  1. Poggie J., McLaughlin T., Leonov S. // Aerospace-Lab J. 2015. № 10. P. AL10-01. https://doi.org/10.12762/2015.AL10-01
  2. Ershov A.P., Surkont O.S., Timofeev I.B., Shibkov V.M., Chernikov V.A. // High Temperature. 2004. V. 42. P. 667. https://doi.org/10.1023/B:HITE.0000046519.53287.47
  3. Firsov A., Savelkin K.V., Yarantsev D.A., Leonov S.B. // Philos. Trans. R. Soc. A. 2015. V. 373. P. 2048. https://doi.org/10.1098/rsta.2014.0337
  4. Alferov V.I., Bushmin A.S. // Soviet Phys. JETP. 1963. V. 17. P. 1190.
  5. Alferov V.I., Bushmin A.S., Kalachev B.V. // Soviet Phys. JETP. 1967. V. 24. P. 859.
  6. Ershov A.P., Kalinin A.V., Surkont O.S., Timofeev I.B., Shibkov V.M., Chernikov V.A. // High Temperature. 2004. V. 42. P. 865. https://doi.org/10.1007/S10740-005-0029-0
  7. Bychkov V.L., Grachev L.P., Esakov I.I., Ravaev A.A., Khodataev K.V. // Technical Phys. 2004. V. 49. P. 833. https://doi.org/10.1134/1.1778855
  8. Шибков В.М., Шибкова Л.В., Логунов А.А. // Физика плазмы. 2017. Т. 43. № 3. С. 314 Shibkov V.M., Shibkova L.V., Logunov A.A. // Plasma Phys. Rep. 2017. V. 43. P. 373. https://doi.org/10.1134/S1063780X17030114
  9. Шибков В.М., Шибкова Л.В., Логунов А.А. // Физика плазмы. 2018. Т. 44. № 8. С. 661. Shibkov V.M., Shibkova L.V., Logunov A.A. // Plasma Phys. Rep. 2018. V. 44. P. 754. https://doi.org/10.1134/S1063780X18080056
  10. Шибков В.М., Корнев К.Н., Логунов А.А., Нестеренко Ю.К. // Физика плазмы. 2022. Т. 48. С. 657–663. = Shibkov V.M., Kornev K.N., Logunov A.A., Nesteren-ko Yu.K. // Plasma Phys. Rep. 2022. V. 48. P. 806–811. https://doi.org/10.1134/S1063780X22700258
  11. Shibkova L.V., Shibkov V.M., Logunov A.A., Dolb-nya D.S., Kornev K.N. // High Temperature. 2020. V. 58. № 6. P. 754. https://doi.org/10.1134/S0018151X2006019X
  12. Ershov A.P., Kamenshchikov S.A., Kolesnikov E.B., Logunov A.A., Firsov A.A., Chernikov V.A. // Fluid Dynamics. 2008. V. 43. P. 605. https://doi.org/10.1134/S0015462808040133
  13. Leonov S.B., Savelkin K.V., Firsov A.A., Yarantsev D.A. // High Temperature. 2010. V. 48. P. 896. https://doi.org/10.1134/S0018151X10060179
  14. Firsov A.A., Kolosov N.S. // J. Phys. Conf. Ser. 2021. V. 2100. P. 012017. https://doi.org/10.1088/1742-6596/2100/1/012017
  15. Leonov S.B., Elliott S., Carter C., Houpt A., Lax P., Ombrello T. // Exp. Therm. Fluid Sci. 2021. V. 124. P. 110355. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2021.110355
  16. Битюрин В.А., Добровольская А.С., Бочаров А.Н., Фирсов А.А. // Физика плазмы. 2023. Т. 49. № 5. = Bityurin V.A., Dobrovolskaya A.S., Bocharov A.N., Fir-sov A.A. // Plasma Phys. Rep. 2023. V. 49. № 5. https://doi.org/10.31857/S0367292123600267
  17. Efimov A.V., Firsov A.A., Kolosov N.S., Leonov S.B. // Plasma Sources Sci. Technol. 2020. V. 29. P. 07LT01. https://doi.org/10.1088/1361-6595/AB9C94
  18. Firsov A.A., Efimov A.V., Kolosov N.S., Moralev I.A., Leonov S.B. // J. Phys. Conf. Ser. 2021. V. 2100. P. 012007. https://doi.org/10.1088/1742-6596/2100/1/012007
  19. Tang M., Wu Y., Wang H. // Acta Astronaut. 2022. V. 198. P. 577. https://doi.org/10.1016/j.actaastro.2022.07.010
  20. Ma X., Fan J., Wu Y., Liu X., Xue R. // Phys. Fluids. 2022. V. 34. P. 086102. https://doi.org/10.1063/5.0095487
  21. Andrews P., Lax P., Leonov S. // Energies (Basel). 2022. V. 15. P. 7104. https://doi.org/10.3390/EN15197104
  22. Falempin F., Firsov A.A., Yarantsev D.A., Goldfeld M.A., Timofeev K., Leonov S.B. // Exper. Fluids. 2015. V. 56. P. 54. https://doi.org/10.1007/S00348-015-1928-4
  23. Ferrero A. // Aerospace. 2020. V. 7. P. 32. https://doi.org/10.3390/aerospace7030032
  24. Watanabe Y., Elliott S., Firsov A., Houpt A., Leonov S. // J. Phys. D Appl. Phys. 2019. V. 52. P. 444003. https://doi.org/10.1088/1361-6463/AB352F
  25. Hongyu W., Feng X., Jie L., Cheng Y., Yanguang Y. // Acta Astronaut. 2021. V. 187. P. 325. https://doi.org/10.1016/j.actaastro.2021.06.049
  26. Gong G., Li Y., Wang Y., Kuang P. // AIP Adv. 2020. V. 10. P. 055212. https://doi.org/10.1063/1.5145235
  27. Dvinin S.A., Ershov A.P., Timofeev I.B., Chernikov V.A., Shibkov V.M. // High Temperature. 2004. V. 42. P. 171. https://doi.org/10.1023/B:HITE.0000026147.82949.36
  28. Moralev I., Kazanskii P., Bityurin V., Bocharov A., Fir-sov A., Dolgov E., Leonov S. // J. Phys. D Appl. Phys. 2020. V. 53. P. 425203. https://doi.org/10.1088/1361-6463/AB9D5A
  29. Bityurin V.A., Bocharov A.N., Kuznetsova T.N. // J. Phys. Conf. Ser. 2020. V. 1698. P. 012027. https://doi.org/10.1088/1742-6596/1698/1/012027
  30. Tarasov D.A., Firsov A.A. // J. Phys. Conf. Ser. 2021. V. 2100. P. 012015. https://doi.org/10.1088/1742-6596/2100/1/012015
  31. Bourlet A., Labaune J., Tholin F., Pechereau F., Vincent-Randonnier A., Laux C.O. // AIAA Sci. Technol. Forum Exposition, AIAA SciTech Forum 2022. P. 2022-0831. https://doi.org/10.2514/6.2022-0831
  32. Трошкин Р.С., Фирсов А.А. // Физика плазмы. 2023. Т. 49. № 5. = Troshkin R.S., Firsov A.A. // Plasma Phys. Rep. 2023. V. 49. № 5. https://doi.org/10.31857/S036729212360022X
  33. Битюрин В.А., Бочаров А.Н., Добровольская А.С., Попов Н.А., Фирсов А.А. // Физика плазмы. 2023. Т. 49. № 5. Bityurin V.A., Bocharov A.N., Dobrovol-skaya A.S., Popov N.A., Firsov A.A. // Plasma Phys. Rep. 2023. V. 49. № 5. https://doi.org/10.31857/S0367292123600255
  34. Houpt A., Hedlund B., Leonov S., Ombrello T., Carter C. // Exp. Fluids. 2017. V. 58. P. 25. https://doi.org/10.1007/S00348-016-2295-5
  35. Logunov A.A., Kornev K.N., Shibkova L.V., Shibkov V.M. // High Temperature. 2021. V. 59. P. 19. https://doi.org/10.1134/S0018151X21010119
  36. Firsov A., Bityurin V., Tarasov D., Dobrovolskaya A., Troshkin R., Bocharov A. // Energies (Basel). 2022. V. 15. P. 7015. https://doi.org/10.3390/en15197015

补充文件

附件文件
动作
1. JATS XML
2.

下载 (600KB)
3.

下载 (343KB)
4.

下载 (161KB)
5.

下载 (131KB)
6.

下载 (896KB)
7.

下载 (415KB)
8.

下载 (247KB)
9.

下载 (366KB)

版权所有 © Е.Е. Перевощиков, А.А. Фирсов, 2023

##common.cookie##