Dusty Plasma under Conditions of Glow Discharge in Magnetic Field of up to 2.5 T

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Under conditions of glow discharge in the strong magnetic field, three-dimensional dust structures were created in the He, Ne, and Ar working gases in three types of dust traps (in standing stratum, in the region of current channel narrowing, and in the region of nonuniform magnetic field). These structures are stable in the fields of the order of 2 T. In all traps, the rotation dynamics have been studied of horizontal (perpendicular to the magnetic field) cross sections of dust structures, their angular velocities has been measured, and the nonuniform angular velocity distributions in the dust structure volumes have been measured. For the first time, for the trap in the region of current channel narrowing, the data are presented in the range of magnetic inductions of up to 2.5 T. Such magnetic fields correspond to the Ne+ ion magnetization parameter of approximately 2 and the ion cyclotron radius comparable to the shielding distance. In the fields higher than 1.5 T, the angular velocity of the structure rotation increased to 50 s–1, which is a record-breaking fast rotation of dusty plasma. For each of the traps under study, the geometrical features of the dust structures are described.

作者简介

E. Dzlieva

St. Petersburg State University

Email: v.karasev@spbu.ru
199034, St. Petersburg, Russia

L. Dyachkov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: v.karasev@spbu.ru
127412, Moscow, Russia

V. Karasev

St. Petersburg State University

Email: v.karasev@spbu.ru
199034, St. Petersburg, Russia

L. Novikov

St. Petersburg State University

Email: v.karasev@spbu.ru
199034, St. Petersburg, Russia

S. Pavlov

St. Petersburg State University

编辑信件的主要联系方式.
Email: v.karasev@spbu.ru
199034, St. Petersburg, Russia

参考

  1. Chen F.F. Introduction to Plasma Physics and Controlled Fusion. N.Y.: Plenum Press,1984.
  2. Голант В.E., Жилинский A.П., Сахаров И.Е. Основы физики плазмы. М.: Атомиздат, 1977. 384 с.
  3. Merlino R.L., Barkan A., Thompson C., D’Angelo N. // Phys. Plasmas. 1998. V. 5. P. 1607.
  4. Фортов В.Е., Храпак А.Г., Храпак С.А., Молот-ков В.И., Петров О.Ф. // УФН. 2004. Т. 174. С. 495.
  5. Комплексная и пылевая плазма / Ред. Фортов В.Е., Морфил Г.Е. М.: Физматлит, 2012. 444 с.
  6. Tsytovich V.N., Morfill G.E., Vladimirov S.V., Tho-mas H.M. Elementary Physics of complex plasmas. Berlin; New York: Springer, 2008.
  7. Chen F.F. Electric probes. Plasma diagnostic techniques. N.Y.: Academic Press, 1965.
  8. Chan P., Talbot L., Turian K. Electrical Probes in Stationary and Flowing Plasmas, Theory and Application. Berlin, Heidelberg, New York: Springer-Verlag, 1975.
  9. Sato N. // AIP Conf. Proc. 2002. V. 649. P. 66.
  10. Kaw P., Nishikawa K., Sato N. // Phys. Plasmas. 2002. V. 9. P. 387.
  11. Ishihara O., Kamimura T., Hirose K.I., Sato N. // Phys. Rev. E. 2002. V. 66. P. 046406.
  12. Schwabe M., Konopka U., Bandyopadhyay P., Morfill G.E. // Phys. Rev. Lett. 2011. V. 106. P. 215004.
  13. Thomas E. Jr, Lynch B., Konopka U., Merlino R.L., Rosenberg M. // Phys. Plasmas. 2015. V. 22. P. 030701.
  14. Choudhary M., Bergert R., Mitich S., Thoma M.H. // Phys. Plasmas. 2020. V. 27. P. 063701.
  15. Melzer A., Kruger H., Schutt S., Mulsow M. // Phys. Plasmas 2019. V. 26. P. 093702.
  16. Dzlieva E.S., Dyachkov L.G., Novikov L.A., Pavlov S.I., Karasev V.Yu. // Europ. Phys. Lett. 2018. V. 123. P. 15001.
  17. Karasev V.Yu., Dzlieva E.S., Pavlov S.I., Novikov L.A., Maiorov S.A. // IEEE Transac. Plasma Sci. 2018. V. 46. P. 727.
  18. Karasev V.Y., Dzlieva E.S., D’yachkov L.G., Novi-kov L.A., Pavlov S.I., Tarasov S.A. // Contr. Plasma Phys. 2019. V. 59. № 4–5. P. e201800136.
  19. Dzlieva E.S., Dyachkov L.G., Novikov L.A., Pavlov S.I., Karasev V.Yu. // Plasma Sources Sci. Technol. 2019. V. 28. P. 085020.
  20. Dzlieva E.S., Dyachkov L.G., Novikov L.A., Pavlov S.I., Karasev V.Yu. // Plasma Sources Sci. Technol. 2020. V. 29. P. 085020.
  21. Дзлиева Е.С., Новиков Л.А., Павлов С.И., Кара-сев В.Ю. // Письма ЖТФ. 2018. Т. 44. С. 66.
  22. Дзлиева Е.С., Карасев В.Ю., Павлов С.И. // Физика плазмы. 2016. Т. 42. С.142.
  23. Dzlieva E.S., Dyachkov L.G., Novikov L.A., Pavlov S.I., Karasev V.Yu. // Molecules. 2021. V. 26. P. 3788.
  24. Novikov L.A., Ermolenko M.A., Dzlieva E.S., Pavlov S.I., Plishchuk V.A., Karasev V.Yu. // J. Phys. Conf. Series. 2021. V. 1787. P. 012055.
  25. Pavlov S.I., Dzlieva E.S., Novikov L.A., Ivanov A.Yu., Yanitchin D.V., Plishchuk V.A., Karasev V.Yu. // J. Phys. Conf. Series. 2021. V. 1787. P. 012054.
  26. Недоспасов А.В. // УФН. 1975. Т. 116. С. 643.
  27. Nedospasov A.V. // Europ. Phys. Lett. 2013. V. 103. P. 25001.
  28. Dzlieva E.S., Karasev V.Yu., Pavlov S.I. // Europ. Phys. Lett. 2015. V. 110. P. 55002.
  29. Дзлиева Е.C., Ермоленко М.А., Карасев В.Ю., Пав-лов С.И., Новиков Л.А., Майоров С.А. // Письма ЖЭТФ. 2014. Т. 100. С. 801.
  30. Vasiliev M.M., D’yachkov L.G., Antipov S.N., Huijink R., Petrov O.F., Fortov V.E. // Europ. Phys. Lett. 2011. V. 93. P. 15001.
  31. Васильев М.М., Дьячков Л.Г., Антипов С.Н., Пет-ров О.Ф., Фортов В.Е. // Письма ЖЭТФ. 2007. Т. 86. С. 414.
  32. Abdirakhmanov A.R., Moldabekov Z.A., Kodanova S.K., Dosbolayev M.K., Ramazanov T.S. // IEEE Trans. Plasma Sci. 2019. V. 47. P. 3036.
  33. Абдирахманов А.Р., Карасев В.Ю., Дзлиева Е.С., Павлов С.И., Новиков Л.А., Досболаев М.К., Коданова С.К., Рамазанов Т.С. // ТВТ. 2021. Т. 59. С. 657.
  34. Майоров С.А. // Кр. сообщения по физике ФИАН. 2021. № 4. С. 18.
  35. Грановский В.Л. Электрический ток в газе. Установившийся ток. М.: Наука, 1971.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (266KB)
3.

下载 (84KB)
4.

下载 (27KB)
5.

下载 (26KB)
6.

下载 (26KB)

版权所有 © Е.С. Дзлиева, Л.Г. Дьячков, В.Ю. Карасев, Л.А. Новиков, С.И. Павлов, 2023

##common.cookie##