Первые эксперименты по исследованию генерации отрицательных ионов водорода при использовании непрерывного ЭЦР-разряда на установке GISMO

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Приводятся результаты первых экспериментов по изучению объемной генерации отрицательных ионов водорода при использовании плотной газодинамической плазмы ЭЦР-разряда, который поддерживался непрерывным микроволновым излучением гиротрона (28 ГГц/5 кВт). ЭЦР водородный разряд зажигался в вакуумной камере, помещенной в магнитное поле, создаваемое системой из двух последовательно соединенных магнитных ловушек. Была проведена оптимизация параметров системы с целью получения максимальной средней плотности тока отрицательных ионов j = 25 мА/см2. Определена область генерации отрицательных ионов, измерены зависимости плотности их тока от давления газа и мощности микроволнового излучения, показана перспективность дальнейшей оптимизации по напряжению экстракции.

Об авторах

Р. Л. Лапин

Институт прикладной физики РАН

Email: lapin@ipfran.ru
Россия, Нижний Новгород

В. А. Скалыга

Институт прикладной физики РАН

Email: lapin@ipfran.ru
Россия, Нижний Новгород

И. В. Изотов

Институт прикладной физики РАН

Email: lapin@ipfran.ru
Россия, Нижний Новгород

С. В. Голубев

Институт прикладной физики РАН

Email: lapin@ipfran.ru
Россия, Нижний Новгород

А. Ф. Боханов

Институт прикладной физики РАН

Email: lapin@ipfran.ru
Россия, Нижний Новгород

Е. М. Киселева

Институт прикладной физики РАН

Email: lapin@ipfran.ru
Россия, Нижний Новгород

С. С. Выбин

Институт прикладной физики РАН

Автор, ответственный за переписку.
Email: lapin@ipfran.ru
Россия, Нижний Новгород

Список литературы

  1. Bacal M., Sasao M., Wada M. // J. Appl. Phys. 2021. V. 129. P. 221101. https://doi.org/10.1063/5.0049289
  2. Браун Я. Физика и технология источников ионов. М.: Мир, 1998.
  3. Leung K.N., Ehlers K.W., Bacal M. // Rev. Sci. Instrum. 1983. V. 54. P. 56. https://doi.org/10.1063/1.1137215
  4. Lapin R.L., Skalyga V.A., Izotov I.V., Golubev S.V., Razin S.V., Bokhanov A.F., Kazakov M.Yu., Shaposhni-kov R.A., Kiseleva E.M., Tarvainen O. // J. Phys.: Conf. Ser. 2020. V. 1647. P. 012012. https://doi.org/10.1088/1742-6596/1647/1/012012
  5. Lapin R.L., Izotov I.V., Skalyga V.A., Razin S.V., Shaposhnikov R.A., Tarvainen O. // JINST. 2018. V. 13. P. C12007. https://doi.org/10.1088/1748-0221/13/12/C12007
  6. Dougar-Jabon V.D., Chacon Velasco A.J., Vivas F.A. // Rev. Sci. Instrum. 1998. V. 69. P. 950. https://doi.org/10.1063/1.1148618
  7. Dougar-Jabon V.D. // Phys. Scr. 2001. V. 63. № 4. P. 322. https://doi.org/10.1238/Physica.Regular.063a00322

Дополнительные файлы


© Р.Л. Лапин, В.А. Скалыга, И.В. Изотов, С.В. Голубев, А.Ф. Боханов, Е.М. Киселева, С.С. Выбин, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах