UNCOVERING THE ROLE OF CERIUM-CONTAINING COMPOUNDS IN PLASMA SYNTHESIS OF LUMINESCENT MATERIALS

Capa

Citar

Texto integral

Resumo

Luminescent materials based on Al5O6N doped with Ce3+ ions were prepared via plasma-chemical process resulting from a microwave discharge initiated in metal-dielectric powder mixtures. The subthreshold self-non-self-sustained discharge was initiated by microwave pulses with a frequency of 75 GHz, a power of 400 kW, and a duration of 8 ms in Al/γ-Al2O3/melamine mixtures. Cerium was introduced in the forms of CeO2 and Ce(acac)3H2O, as well as via pre-doping of γ-Al2O3 with Ce3+ ions. The kinetic parameters of the plasma-chemical process were determined. The products of the process were studied with electronic microscopy and X-ray diffraction analysis, also their pulsed cathodoluminescence spectra were measured. It has been shown that the rate of the plasma-chemical process and the efficiency of the Ce3+ ions incorporation into the resulting phase of aluminum oxynitride Al5O6N strongly depend on the nature of cerium-containing precursor.

Sobre autores

N. Akhmadullina

Institute of Metallurgy and Materials Science named after. A.A. Baikov Russian Academy of Sciences

Email: nakhmadullina@mail.ru
Moscow, Russia

A. Kozak

Institute of General Physics named after A.M. Prokhorov Russian Academy of Sciences

Moscow, Russia

A. Petrov

Institute of General Physics named after A.M. Prokhorov Russian Academy of Sciences

Moscow, Russia

D. Pozdnyakov

Institute of General Physics named after A.M. Prokhorov Russian Academy of Sciences

Moscow, Russia

I. Vafin

Institute of General Physics named after A.M. Prokhorov Russian Academy of Sciences

Moscow, Russia

A. Sokolov

Institute of General Physics named after A.M. Prokhorov Russian Academy of Sciences

Moscow, Russia

O. Shishilov

Institute of General Physics named after A.M. Prokhorov Russian Academy of Sciences; MIREA - Russian Technological University

Email: oshishilov@gmail.com
Moscow, Russia; Moscow, Russia

Bibliografia

  1. Shinde K.N., Dhoble S.J., Swart H.C., and Park K. Phosphate Phosphors for Solid-State Lighting. London: Springer, London, 2012. https://doi.org/10.1007/978-3-642-34312-4
  2. Sheoran S., Singh V., Singh S., Kadyan S., Singh J., and Singh D. // Prog. Nat. Sci. Mater. Int. 2019. V. 29. P. 457. https://doi.org/10.1016/j.pnsc.2019.07.003
  3. Nidhankar A.D., Goudappagouda, Wakchaure V.C., and Babu S.S. // Chem. Sci. 2023. V. 12. P. 4216. https://doi.org/10.1039/D1SC00446H
  4. Deka L.R., Dubey V. // Inorg. Chem. Comm. 2025. V. 180. P. 115058. https://doi.org/10.1016/j.inoche.2025.115058
  5. Birkel A., Denault K.A., George N.C., Doll C.E., Héry B., Mikhailovsky A.A., Birkel C.S., Hong B.C., and Seshadri R. // Chem. Mater. 2012. V. 24. P. 1198. https://doi.org/10.1021/cm3000238
  6. Vishwakarma A.K., Jha K., Jayasimhadri M., Rao A.S., Jang K., Sivaiah B., and Haranath D. // J. Alloys Compd. 2015. V. 622. P. 97 (2015). https://doi.org/10.1016/j.jallcom.2014.10.016
  7. Lin Y.C., Karlsson M., and Bettinelli M. // Top. Curr. Chem. 2016. V. 374. P. 21. https://doi.org/10.1007/s41061-016-0023-5
  8. George N.C., Denault K.A., and Seshadri R. // Annu. Rev. Mater. Res. 2013. V. 43. P. 481. https://doi.org/10.1146/annurev-matsci-073012-125702
  9. Hirosaki N., Takeda T., Funahashi S., and Xie R.J. // Chem. Mater. 2014. V. 26. P. 4280. https://doi.org/10.1021/cm501866x
  10. Yanagida T., Koshimizu M. Phosphors for Radiation Detectors. John Wiley & Sons Ltd., 2022. https://doi.org/10.1002/9781119583363
  11. Gupta I., Singh S., Bhagwan S., and Singh D. // Ceram. Int. 2021. V. 47. P. 19282. https://doi.org/10.1016/j.ceramint.2021.03.308
  12. Shi H., Zhang X.Y., Wang N.L., Dong W.L., and Mi X.Y. // Func. Mater. Lett. 2015. V. 8. P. 1550006. https://doi.org/10.1142/S179360471550006X
  13. Zhang X., Chen R., Wang P., Gan Z., Zhang Y., Jin H., Jian J., and Xu J. // Opt. Express. 2019. V. 27. P. 2783. https://doi.org/10.1364/OE.27.002783
  14. Qian B., Zou H., Meng D., Zhou X., Song Y., Zheng K., Miao C., and Sheng Y. // CrystEngComm. 2018. V. 20. P. 7322. https://doi.org/10.1039/C8CE01441H
  15. Singh S., Tanwar V., Simantilleke A.P., and Singh D. // Nano-Struct. Nano-Objects. 2020. V. 21. P. 100427. https://doi.org/10.1016/j.nanoso.2020.100427
  16. Singh D., Tanwar V., Simantilleke A.P., Bhagwan S., Mari B., Kadyan P.S., Singh K.C., and Singh I. // J. Mater. Sci. Mater. Electron. 2016. V. 27. P. 5303. https://doi.org/10.1007/s10854-016-4428-2
  17. Singh D., Tanwar V., Simantilleke A.P., Mari B., Kadyan P.S., and Singh I. // J. Mater. Sci. Mater. Electron. 2016. V. 27. P. 2260. https://doi.org/10.1007/s10854-015-4020-1
  18. Kadyan S., Singh S., Simantilleke A.P., and Singh D. // Optik. 2020. V. 212. P. 164671. https://doi.org/10.1016/j.ijleo.2020.164671
  19. Pradal N., Chadeyron G., Thérias S., Potdevin A., Santilli C.V., and Mahiou R. // Dalton Trans. 2014. V. 43. P. 1072. https://doi.org/10.1039/C3DT51915E
  20. Singh S., Singh D. // J. Mater. Sci. Mater. Electron. 2020. V. 31. P. 5165. https://doi.org/10.1007/s10854-020-03076-5
  21. Jia D., Jia W., and Jia Y. // J. Appl. Phys. 2007. V. 101. P. 023520. https://doi.org/10.1063/1.2409767
  22. Kim Y., Park S. // Mater. Res. Bull. 2014. V. 49. P. 469. https://doi.org/10.1016/j.materresbull.2013.09.035
  23. Ningombam G.S., David T.S., and Singh N.R. // ACS Omega. 2019. V. 4. P. 13762. https://doi.org/10.1021/acsomega.9b01265
  24. Zhang S., Liang H., and Liu C. // J. Phys. Chem. C. 2013. V. 117. P. 2216. https://doi.org/10.1021/jp3120258
  25. Qin C., Huang Y., Shi L., Chen G., Qiao X., and Seo H.J. // J. Phys. D Appl. Phys. 2009. V. 42. P. 185105. https://doi.org/10.1088/0022-3727/42/18/185105
  26. Yim D.K., Cho I.S., Lee C.W., Noh J.H., Roh H.S., and Hong K.S. // Opt. Mater. 2011. V. 33. P. 1036. https://doi.org/10.1016/j.optmat.2011.02.031
  27. Shinde K.N., Dhoble S.J., and Kumar A. // Bull. Mater. Sci. 2011. V. 34. P. 937. https://doi.org/10.1007/s12034-011-0218-x
  28. Reddy L. // J. Fluoresc. 2025. V. 35. P. 1205. https://doi.org/10.1007/s10895-023-03561-0
  29. Kimura N., Sakuma K., Hirafune S., Asano K., Hirosaki N., and Xie R.J. // Appl. Phys. Lett. 2007. V. 90. P. 1. https://doi.org/10.1063/1.2437090
  30. Xie R.J., Hirosaki N., Li Y., and Takeda T. // Materials. 2010. V. 3. P. 3777. https://doi.org/10.3390/ma3063777
  31. Kargin Yu.F., Akhmadullina N.S., and Solntsev K.A. // Inorg. Mater. 2014. V. 50. P. 1325. https://doi.org/10.1134/S0020168514130032
  32. Li S., Xie R.-J., Takeda T., and Hirosaki N. // ECS J. Solid State Sci. Technol. 2017. V. 7. P. R3064. https://doi.org/10.1149/2.0051801jss
  33. Akhmadullina N.S., Shishilov O.N., and Kargin Yu.F. // Russ. Chem. Bull. 2020. V. 69. P. 825. https://doi.org/10.1007/s11172-020-2841-4
  34. Misra S.K., Andronenko S.I. // Appl. Magn. Reson. 2007. V. 32. P. 377. https://doi.org/10.1007/s00723-007-0020-5
  35. Lee J.H., Kim Y.J. // Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2008. V. 146. P. 99. https://doi.org/10.1016/j.mseb.2007.07.052
  36. Park B.K., Lee S.S., Kang J.K., and Byeon S.H. // Bull. Kor. Chem. Soc. 2007. V. 28. P. 1467. https://doi.org/10.5012/bkcs.2007.28.9.1467
  37. Li Y., You B., Zhang W., and Yin M. // J. Rare Earths. 2008. V. 26. P. 455. https://doi.org/10.1016/S1002-0721(08)60117-9
  38. Célérier S., Laberty C., Ansart F., Lenormand P., and Stevens P. // Ceram. Int. 2006. V. 32. P. 271. https://doi.org/10.1016/j.ceramint.2005.03.001
  39. Sheoran S., Singh S., Mann A., Samantilleke A., Mani B., and Singh D. // J. Mater. Nanosci. 2019. V. 6. P. 73.
  40. Peternele W.S., Monge Fuentes V., Fascineli M.L., Rodrigues Da Silva J., Silva R.C., Lucci C.M., and Bentes De Azevedo R. // J. Nanomater. 2014. V. 2014. P. 1. https://doi.org/10.1155/2014/682985
  41. Bilecka I., Niederberger M. // Nanoscale. 2010. V. 2. P. 1358. https://doi.org/10.1039/b9nr00377k
  42. Kundu S., Wang K., and Liang H. // J. Phys. Chem. C. 2009. V. 113. P. 134. https://doi.org/10.1021/jp808292s
  43. Chen H.Y., Weng M.H., Chang S.J., and Yang R.Y. // Ceram. Int. 2012. V. 38. P. 125. https://doi.org/10.1016/j.ceramint.2011.06.044
  44. Peng G.H., Li N., Liang Z.H., Wang X., Wu J.L., and Wang X.F. // J. Alloys Compd. 599, 102 (2014). https://doi.org/10.1016/j.jallcom.2014.02.091
  45. Wang H., Qian C., Yi Z., Rao L., Liu H., and Zeng S. // Adv. Condens. Matter Phys. 2013. V. 2013. https://doi.org/10.1155/2013/347406
  46. Varma A., Mukasyan A.S., Rogachev A.S., and Manukyan K.V. // Chem. Rev. 2016. V. 116. P. 14493. https://doi.org/10.1021/acs.chemrev.6b00279
  47. Nersisyan H.H., Lee J.H., Ding J.R., Kim K.S., Manukyan K.V., and Mukasyan A.S. // Prog. Energy Combust. Sci. 2017. V. 63. P. 79.
  48. Patil P.S. // Mater. Chem. Phys. 1999. V. 59. P. 185. https://doi.org/10.1016/S0254-0584(99)00049-8
  49. Tsai S.C., Song Y.L., Tsai C.S., Yang C.C., Chiu W.Y., and Lin H.M. // J. Mater. Sci. 2004. V. 39. P. 3647. https://doi.org/10.1023/B:JMSC.0000030718.76690.11
  50. Cho Y., Huh Y., Park C.R., and Do Y.R. // Electron. Mater. Lett. 2014. V. 10. P. 461. https://doi.org/10.1007/s13391-014-4024-7
  51. Al-Mamun S.A., Ishigaki T. // J. Am. Ceram. Soc. 2014. V. 97. P. 1083. https://doi.org/10.1111/jace.12856
  52. Deng H.W., Chen D.H. // Chalcogenide Lett. 2021. V. 18. P. 617. https://doi.org/10.15251/CL.2021.1810.617
  53. Lu C., Chen S., Hsu C. // Mater. Sci. Eng. B. 2007. V. 140. P. 218. https://doi.org/10.1016/j.mseb.2007.05.001
  54. Finley E., Paterson A.S., Cobb A., Willson R.C., and Brgoch J. // Opt. Mater. Express. 2007. V. 7. P. 2597. https://doi.org/10.1364/OME.7.002597
  55. Burianova S., Vejpravova J. P., Holec P., Plocek J., and Niznansky D. // J. Appl. Phys. 2011. V. 110. P. 073902. https://doi.org/10.1063/1.3642992
  56. Шишилов О.Н., Ахмадуллина Н.С., Скворцова Н.Н., Степахин В.Д., Борзосеков В.Д., Малахов Д.В., Гусейн-заде С.Н., Гусейн-заде Н.Г. // Патент RU2826861.
  57. Skvortsova N.N., Shishilov O.N., Akhmadullina N.S., Konchekov E.M., Letunov A.A., Malakhov D.V., Obraztsova E.A., and Stepakhin V.D. // Ceram. Int. 2021. V. 47. P. 3978. https://doi.org/10.1016/j.ceramint.2020.09.262
  58. Akhmadullina N.S., Skvortsova N.N., Obraztsova E.A., Stepakhin V.D., Konchekov E.M., Letunov A.A., Konovalov A.A., Kargin Yu.F., and Shishilov O.N. // Chem. Phys. 2019. V. 516. P. 63. https://doi.org/10.1016/j.chemphys.2018.08.023
  59. Skvortsova N.N., Obraztsova E.A., Stepakhin V.D., Konchekov E.M., Gayanova T.E., Vasilieva L.A., Lukianov D.A., Sybachin A.V., Skvortsov D.A., Gusein-Zade N.G., and Shishilov O.N. // Fusion Sci. Technol. 2023. V. 80. P. 882. https://doi.org/10.1080/15361055.2023.2255442
  60. Skvortsova N.N., Akhmadullina N.S., Vafin I.Yu., Obraztsova E.A., Hrytseniuk Ya.S., Nikandrova A.A., Lukianov D.A., Gayanova T.E., Voronova E.V., Shishilov O.N., and Stepakhin V.D. // Int. J. Mol. Sci. 2024. V. 25. P. 5326. https://doi.org/10.3390/ijms25105326
  61. Skvortsova N.N., Voronova E.V., Vafin I.Yu., Akhmadullina N.S., Gayanova T.E., Letunov A.A., Logvinenko V.P., Kolchanova A.Yu., Borzosekov V.D., Sokolov A.S., Stepakhin V.D., Obraztsova E.A., and Shishilov O.N. // Fusion Sci. Technol. 2025. V. 2025. P. 1. https://doi.org/10.1080/15361055.2025.2478656
  62. Соколов А.С., Борзосеков В.Д., Степахин В.Д., Артемьев К.В., Малахов Д.В., Нугаев И.Р., Харлачев Д.Е., Гаянова Т.Э., Поздняков Д.О., Козак А.К. // Патент RU228335.
  63. Batanov G.M., Borzosekov V.D., Golberg D., Iskhakova L.D., Kolik L.V., Konchekov E.M., Kharchev N.K., Letunov A.A., Malakhov D.V., Milovich F.O., Obraztsova E.A., Petrov A.E., Ryabikina I.G., Sarksian K.A., Stepakhin V.D., Skvortsova N.N. // J. Nanophoton. 2016. V. 10. P. 012520. https://doi.org/10.1117/1.JNP.10.012520
  64. Kharchev N.K., Batanov G.M., Kolik L.V., Malakhov D.V., Petrov A.Ye., Sarksyan K.A., Skvortsova N.N., Stepakhin V.D., Belousov V.I., Malygin S.A., and Tai Ye.M. // Rev. Sci. Instrum. 2013. V. 84. P. 013507. https://doi.org/10.1063/1.4773544
  65. Kharchev N.K., Batanov G.M., Berezhetskii M.S., Borzosekov V.D., Fedyanin O.I., Grebenshchikov S.E., Grishina I.A., Khol’nov Yu.V., Kolik L.V., Konchekov E.M., Kovrizhnykh L.M., Larionova N.F., Malakhov D.V., Meshcheryakov A.I., Petrov A.E., Pleshkov E.I., Sarksyan K.A., Shchepetov S.V., Skvortsova N.N., Stepakhin V.D., Vafin I.Yu., Vasilkov D.G., and Voronov G.S. // Plasma Fusion Res. 2011. V. 6. P. 2402142. https://doi.org/10.1585/pfr.6.2402142
  66. Ishchenko A.V., Akhmadullina N.S., Leonidov I.I., Sirotinkin V.P., Skvortsova L.G., Mandrygina D.A., Shishilov O.N., Zhidkov I.S., Kukharenko A.I., Weinstein I.A., and Kargin Yu.F. // Phys. B: Condens. Matter. 2024. V. 695. P. 416593. https://doi.org/10.1016/j.physb.2024.416593
  67. Scherer P.O.J., Fischer S.F. // Theoretical Molecular Biophysics. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg, 2017. https://doi.org/10.1007/978-3-662-55671-9_6
  68. Kitagawa Yu., Ueda J., and Tanabe S. // Dalton Trans. 2024. V. 53. P. 8069. https://doi.org/10.1039/D4DT00191E

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).