Classification of Edge Instabilities at Globus-M2 Tokamak

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Among the peripheral instabilities observed at the Globus-M2 tokamak, two types of edge localized modes (ELMs) are brought into focus: ELMs synchronized and desynchronized with the sawtooth oscillations. The desynchronized ELMs appear in regimes that are characterized by high values of pressure in the pedestal, pped ≥ 3 kPa, and they are observed in discharges with the toroidal magnetic field BT > 0.6 T and plasma current IP > 0.3 MA. The desynchronized ELMs belong to the type-III/V with the dominating effect of the peeling mode. The synchronized ELMs were observed in a wider range of discharge parameters, including at BT < 0.6 T and IP < 0.3 MA. Calculations of the stability of the peeling-ballooning (PB) mode showed that at pedestal width ψnorm = 0.09 and pped > 3.5 kPa, destabilization of PB modes is possible without additional influence. Experimental data shows that the microtearing mode plays a dominant role in the pedestal. The microtearing mode does not allow the pedestal at Globus-M2 tokamak to reach the state of the unstable kinetic ballooning mode (KBM), which explains the low predictive power of the EPED model at this tokamak.

Sobre autores

V. Solokha

Ioffe Institute, Russian Academy of Sciences

Email: erina.tkachenko@yandex.ru
St. Petersburg, Russia

Yu. Petrov

Ioffe Institute, Russian Academy of Sciences

Email: min-anat@mail.ru
St. Petersburg, Russia

A. Ponomarenko

Peter the Great St. Petersburg Polytechnic University

Email: yu.petrov@mail.ioffe.ru
St. Petersburg, 195251 Russia

N. Sakharov

Ioffe Institute, Russian Academy of Sciences

Email: nikolay.sakharov@mail.ioffe.ru
St. Petersburg, Russia

A. Telnova

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

E. Tkachenko

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

V. Tokarev

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

S. Tolstyakov

Ioffe Institute, Russian Academy of Sciences

Email: yu.petrov@mail.ioffe.ru
St. Petersburg, 194064 Russia

E. Tyukhmeneva

Ioffe Institute, Russian Academy of Sciences

Email: min-anat@mail.ru
St. Petersburg, Russia

N. Khromov

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

A. Novokhatskii

Ioffe Institute, Russian Academy of Sciences

Email: erina.tkachenko@yandex.ru
St. Petersburg, Russia

V. Minaev

Ioffe Institute, Russian Academy of Sciences

Email: min-anat@mail.ru
St. Petersburg, Russia

E. Kiselev

Ioffe Institute, Russian Academy of Sciences

Email: min-anat@mail.ru
St. Petersburg, Russia

G. Kurskiev

Ioffe Institute, Russian Academy of Sciences

Email: min-anat@mail.ru
St. Petersburg, Russia

A. Yashin

Ioffe Institute, Russian Academy of Sciences; Peter the Great St. Petersburg Polytechnic University

Email: yu.petrov@mail.ioffe.ru
St. Petersburg, 194064 Russia; St. Petersburg, 195251 Russia

I. Balachenkov

Ioffe Institute, Russian Academy of Sciences

Email: bakharev@mail.ioffe.ru
St. Petersburg, 194021 Russia

V. Varfolomeev

Ioffe Institute, Russian Academy of Sciences

Email: bakharev@mail.ioffe.ru
St. Petersburg, 194021 Russia

A. Voronin

Ioffe Institute, Russian Academy of Sciences

Email: yu.petrov@mail.ioffe.ru
Россия, Санкт-Петербург

V. Gusev

Ioffe Institute, Russian Academy of Sciences

Email: min-anat@mail.ru
St. Petersburg, Russia

V. Goryainov

Ioffe Institute, Russian Academy of Sciences

Email: yu.petrov@mail.ioffe.ru
St. Petersburg, 194064 Russia

V. Dyachenko

Ioffe Institute, Russian Academy of Sciences

Email: yu.petrov@mail.ioffe.ru
St. Petersburg, 194064 Russia

N. Zhiltsov

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

P. Shchegolev

Ioffe Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: min-anat@mail.ru
St. Petersburg, Russia

Bibliografia

  1. Leonard A.W. // Phys. Plasmas 2014. 21 090501. https://doi.org/10.1063/1.4894742
  2. Wagner F., Fussmann G., Grave T., Keilhacker M., Kornherr M., Lackner K., McCormick K., Müller E.R., Stäbler A., Becker G., Bernhardi K., Ditte U., Eberha-gen A., Gehre O., Gernhardt J., Gierke G.v., Glock E., Gruber O., Haas G., Hesse M., Janeschitz G., Karger F., Kissel S., Klüber O., Lisitano G., Mayer H.M., Meisel D., Mertens V., Murmann H., Poschenrieder W., Rapp H., Röhr H., Ryter F., Schneider F., Siller G., Smeulders P., Söldner F., Speth E., Steuer K.-H., Szymanski Z., Vollmer O. // Phys. Rev. Lett. 1984. 53. 1453. https://doi.org/10.1103/PhysRevLett.53.1453
  3. Wilson H.R., Cowley S.C. // Phys. Rev. Lett. 2004. 92. 175006 https://doi.org/10.1103/PhysRevLett.92.175006
  4. Lampert M., Diallo A., Myra J.R., Zweben S.J. // Phys. Plasmas 2021. 28. 022304 https://doi.org/10.1063/5.0031322
  5. Snyder P.B., Wilson H.R., Ferron J.R., Lao L.L., Leonard A.W., Osborne T.H., Turnbull A.D., Mossessian D., Murakami M., Xu X.Q. // Phys. Plasmas. 2002. 9 2037 https://doi.org/10.1063/1.1449463
  6. Snyder P.B., Groebner R.J., Hughes J.W., Osborne T.H., Beurskens M., Leonard A.W., Wilson H.R., Xu X.Q. // Nucl. Fusion 2011. 51. 103016 https://doi.org/10.1088/0029-5515/51/10/103016
  7. Loarte A., Becoulet M., Saibene G., Sartori R., Camp-bell D.J., Eich T., Herrmann A., Laux M., Suttrop W., Alper B., Lomas P.J., Matthews G., Jachmich S., Ongena J., Innocente P. and EFDA- JET Workprogramme Collaborators // Plasma Phys. Control. Fusion 2022. 44. 1815. https://doi.org/10.1088/0741-3335/44/9/303
  8. Zohm H., Osborne T.H., Burrell K.H., Chu M.S., Doyle E.J., Gohil P., Hill D.N., Lao L.L., Leonard A.W., Taylor T.S., Turnbull A.D. // Nucl. Fusion 1995. 35 543. https://doi.org/10.1088/0029-5515/35/5/I05
  9. Kass T., Günter S., Maraschek M., Suttrop W., Zohm H. and ASDEX Upgrade Team // Nucl. Fusion 1998. 38. 111. https://doi.org/10.1088/0029-5515/38/1/310
  10. Saarelma S., Hender T.C., Kirk A., Meyer H., Wilson H.R., and MAST Team // Plasma Phys. Control. Fusion 2007. 49. 31. https://doi.org/10.1088/0741-3335/49/1/003
  11. Maingi R., Bush C.E., Fredrickson E.D., Gates D.A., Kaye S.M., LeBlanc B.P., Menard J.E., Meyer H., Mueller D., Nishino N., Roquemore A.L., Sabbagh S.A., Tritz K., Zweben S.J., Bell M.G., Bell R.E., Biewer T., Boedo J.A., Johnson D.W., Kaita R., Kugel H.W., Maqueda R.J., Munsat T., Raman R., Soukhanovskii V.A., Stevenson T., Stutman D. // Nucl. Fusion 2005. 45. 1066. https://doi.org/10.1088/0029-5515/45/9/006
  12. Zohm H. // Plasma Phys. Control. Fusion 1996. 38. 105. https://doi.org/10.1088/0741-3335/38/2/001
  13. Maingi R. // Phys. Plasmas. 2006. 13. 092510. https://doi.org/10.1063/1.2226986
  14. Lang P.T., Loarte A., Saibene G., Baylor L.R., Becou-let M., Cavinato M., Clement-Lorenzo S., Daly E., Evans T.E., Fenstermacher M.E., Gribov Y., Horton L.D., Lowry C., Martin Y., Neubauer O., Oyama N., Schaf-fer M.J., Stork D., Suttrop W., Thomas P., Tran M., Wilson H.R., Kavin A., Schmitz O. // Nucl. Fusion. 2013. 53. 043004. https://doi.org/10.1088/0029-5515/53/4/043004
  15. Solokha V.V., Kurskiev G.S., Bulanin V.V., Petrov A.V., Tolstyakov S.Yu., Mukhin E.E., Gusev V.K., Petrov Yu.V., Sakharov N.V., Tokarev V.A., Khromov N.A., Patrov M.I., Bakharev N.N., Sladkomedova A.D., Telnova A.Yu., Shchegolev P.B., Kiselev E.O., Yashin A.Yu. // J. Phys.: Conf. Ser. 2018. 1094. 012002. https://doi.org/10.1088/1742-6596/1094/1/012002
  16. Bulanin V.V., Kurskiev G.S., Solokha V.V., Yashin A.Yu., Zhiltsov N.S. // Plasma Phys. Control. Fusion 2021. 63. 122001. https://doi.org/10.1088/1361-6587/ac36a4
  17. Minaev V.B., Gusev V.K., Sakharov N.V., Varfolomeev V.I., Bakharev N.N., Belyakov V.A., Bondarchuk E.N., Brunkov P.N., Chernyshev F.V., Davydenko V.I., Dyachen-ko V.V., Kavin A.A., Khitrov S.A., Khromov N.A., Kise-lev E.O., Konovalov A.N., Kornev V.A., Kurskiev G.S., Labusov A.N., Melnik A.D., Mineev A.B., Mironov M.I., Miroshnikov I.V., Patrov M.I., Petrov Yu.V., Rozhan-sky V.A., Saveliev A.N., Senichenkov I.Yu., Shchego-lev P.B., Shcherbinin O.N., Shikhovtsev I.V., Sladkomedova A.D., Solokha V.V., Tanchuk V.N., Telnova A.Yu., Tokarev V.A., Tolstyakov S.Yu., Zhilin E.G. // Nucl. Fusion 2017. 57. 066047. https://doi.org/10.1088/1741-4326/aa69e0
  18. Gusev V.K., Golant V.E., Gusakov E.Z., D’yachenko V.V., Irzak M.A., Minaev V.B., Mukhin E.E., Novokhatskii A.N., Podushnikova K.A., Razdobarin G.T., Sakharov N.V., Tregubova E.N., Uzlov V.S., Shcherbinin O.N., Belya-kov V.A., Kavin A.A., Kostsov Yu.A., Kuz’min E.G., Soikin V.F., Kuznetsov E.A., Yagnov V.A. // Tech. Phys. 1999. 44. 1054. https://doi.org/10.1134/1.1259469
  19. Kurskiev G.S., Gusev V.K., Sakharov N.V., Petrov Yu.V., Bakharev N.N., Balachenkov I.M., Bazhenov A.N., Chernyshev F.V., Khromov N.A., Kiselev E.O., Kriku-nov S.V., Minaev V.B., Miroshnikov I.V., Novokhatskii A.N., Zhiltsov N.S., Mukhin E.E., Patrov M.I., Shulyatiev K.D., Shchegolev P.B., Skrekel O.M., Telnova A.Yu., Tkachenko E.E., Tukhmeneva E.A., Tokarev V.A., Tolstyakov S.Yu., Varfolomeev V.I., Voronin A.V., Goryai-nov V.Yu., Bulanin V.V., Petrov A.V., Ponomarenko A.M., Yashin A.Yu., Kavin A.A., Zhilin E.G., Solovey V.A. // Nucl. Fusion 2022. 62. 016011. https://doi.org/10.1088/1741-4326/ac38c9
  20. Yashin A., Bulanin V., Petrov A., Ponomarenko A. // A-ppl. Sci. 2021. 11. 8975. https://doi.org/10.3390/app11198975
  21. Sakharov N.V., Voronin A.V., Gusev V.K., Kavin A.A., Kamenshchikov S.N., Lobanov K.M., Minaev V.B., Novokhatsky A.N., Patrov M.I., Petrov Yu.V., Shchego-lev P.B. // Plasma Phys. Rep. 2015. 41. 997. https://doi.org/10.1134/S1063780X15120120
  22. Курскиев Г.С., Жильцов Н.С., Коваль А.Н., Корнев А.Ф., Макаров А.М., Мухин Е.Е. // Письма в Журнал технической физики 2021. 47. 24. https://doi.org/10.21883/PJTF.2021.24.51799.19019
  23. Muller M. Dynamic Time Warping. In: Information Retrieval for Music and Motion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74048-3_4
  24. Kalupin D., Tokar M.Z., Unterberg B., Loozen X., Pilipenko D., Zagorski R. and TEXTOR Contributors // Plasma Phys. Control. Fusion 2006. 48. A309. https://doi.org/10.1088/0741-3335/48/5A/S30
  25. Porcelli F., Boucher D., Rosenbluth M.N. // Plasma Phys. Control. Fusion 1996. 38. 2163. https://doi.org/10.1088/0741-3335/38/12/010
  26. Greenwald M., Terry J.L., Wolfe S.M., Ejima S., Bell M.G., Kaye S.M., Neilson G.H. // Nucl. Fusion 1988. 28 2199. https://doi.org/10.1088/0029-5515/28/12/009
  27. Eich T., Goldston R.J., Kallenbach A., Sieglin B., Sun H.J., ASDEX Upgrade Team and JET Contributors // Nucl. Fusion 2018. 58. 034001. https://doi.org/10.1088/1741-4326/aaa340
  28. Suttrop W., Kaufmann M., de Blank H.J., Brüsehaber B., Lackner K., Mertens V., Murmann H., Neuhauser J., Ryter F., Salzmann H., Schweinzer J., Stober J., Zohm H. and the ASDEX Upgrade Team // Plasma Phys. Control. Fusion 1997. 39. 2051. https://doi.org/10.1088/0741-3335/39/12/008
  29. Larakers J.L., Curie M., Hatch D.R., Hazeltine R.D., Mahajan S.M. // Phys. Rev. Lett. 2021. 126. 225001. https://doi.org/10.1103/PhysRevLett.126.225001
  30. Nelson A.O., Laggner F.M., Diallo A., Smith D., Xing Z.A., Shousha R., Kolemen E. // Nucl. Fusion 2021. 61. 116038. https://doi.org/10.1088/1741-4326/ac27ca
  31. Redl A., Angioni C., Belli E., Sauter O., ASDEX Upgrade Team, and EUROfusion MST1 Team // Phys. Plasmas 2021. 28. 022502. https://doi.org/10.1063/5.0012664
  32. Dudson B.D., Umansky M.V., Xu X.Q., Snyder P.B., Wilson H.R. // Comput. Phys. Commun. 2009. 180 1467. https://doi.org/10.1016/j.cpc.2009.03.008
  33. Lao L.L., St. John H.E., Peng Q., Ferron J.R., Strait E.J., Taylor T.S., Meyer W.H., Zhang C., You K.I. // Fusion Sci. Technol. 2005. 48. 968. https://doi.org/10.13182/FST48-968
  34. Dickinson D., Roach C.M., Saarelma S., Scannell R., Kirk A., Wilson H.R. // Phys. Rev. Lett. 2012. 108. 135002. https://doi.org/10.1103/PhysRevLett.108.135002
  35. Diallo A., Maingi R., Kubota S., Sontag A., Osborne T., Podestà M., Bell R.E., LeBlanc B.P., Menard J., Sabbagh S. // Nucl. Fusion. 2011. 51. 103031. https://doi.org/10.1088/0029-5515/51/10/103031
  36. Медведев С.Ю., Иванов А.А., Мартынов А.А., Пошехонов Ю.Ю., Коновалов С.В., Полевой А.Р. // Физика плазмы. 2016. Т. 42. № 5. С. 483. https://doi.org/10.7868/S0367292116050103
  37. Медведев С.Ю., Мартынов А.А., Коновалов С.В., Леонов В.М., Лукаш В.Э., Хайрутдинов Р.Р. // Физика плазмы. 2021. Т. 47. № 11. С. 998. https://doi.org/10.31857/S0367292121110226

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (257KB)
3.

Baixar (190KB)
4.

Baixar (292KB)
5.

Baixar (484KB)
6.

Baixar (367KB)
7.

Baixar (487KB)
8.

Baixar (726KB)
9.

Baixar (816KB)

Declaração de direitos autorais © В.В. Солоха, Г.С. Курскиев, А.Ю. Яшин, И.М. Балаченков, В.И. Варфоломеев, А.В. Воронин, В.К. Гусев, В.Ю. Горяинов, В.В. Дьяченко, Н.С. Жильцов, Е.О. Киселев, В.Б. Минаев, А.Н. Новохацкий, Ю.В. Петров, А.М. Пономаренко, Н.В. Сахаров, А.Ю. Тельнова, Е.Е. Ткаченко, В.А. Токарев, С.Ю. Толстяков, Е.А. Тюхменева, Н.А. Хромов, П.Б. Щеголев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies