Microwave Low-Pressure Gas Discharge Sustained by a Standing Surface Wave in the Dipolar Mode

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The maintenance of a microwave gas discharge of a standing surface electromagnetic wave (SEW) in the dipolar mode is studied. The standing wave was formed between two flat mirrors that create an open resonator type structure on the surface wave. The measured Q factor of the open resonator is several tens. The electric field structures of a free discharge and a discharge supported by a standing surface wave field are determined. It is shown that resonance on a purely surface wave is excited in this system. With an increase in the field energy between the mirrors by 8–10 dB, the concentration of electrons increases by about 50%. The ratios of the surface wave field energies in the plasma and in the space surrounding the discharge both in the case of a free discharge and during resonance are estimated. The results of experiments and numerical simulations show that the structure of the discharge depends on the excited mode of steady-state SEWs.

Sobre autores

V. Zhukov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: zhukov.vsevolod@physics.msu.ru
119991, Moscow, Russia

D. Karfidov

Prokhorov General Physics Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: zhukov.vsevolod@physics.msu.ru
119991, Moscow, Russia

Bibliografia

  1. Sommerfeld A. // Ann. der Physik und Chem. 1899. V. 67. № 2. P. 233.
  2. Trivelpiece A.W. // The DP degree Thesis, California Institute of Technology, Pasadena, 1958.
  3. Trivelpiece A.W., Gould R.W. // J. Appl. Phys. 1959. V. 30. № 11. P. 1784. https://doi.org/10.1063/1.1735056
  4. Сергейчев К.Ф., Карфидов Д.М., Андреев С.Е., Сизов Ю.Е., Жуков В.И. // Радиотехника и электроника. 2018. Т. 63. № 4. С. 314–322.
  5. Oruganti S.K., Liu F.F., Paul D., Liu J., Malik J., Feng K., Kim H., Liang Y.M., Thundat T., Bien F. // Scientific Reports. 2020. V. 10. № 1. P. 925. https://doi.org/10.1038/s41598-020-57554-1
  6. Sergeichev K.F., Karfidov D.M., Zhukov V.I. // Phys. of Wave Phenom. 2019. V. 27. № 1. P. 37–41. https://doi.org/10.3103/S1541308X19010072
  7. Гусейн-заде Н.Г., Жуков В.И., Карфидов Д.М., Сергейчев К.Ф. // Инженерная физика. 2017. № 12. С. 56.
  8. Moisan M., Nowakowska H. // Plasma Sources Sci. Technol. 2018. V. 27. № 7. 073001. https://doi.org/10.1088/1361-6595/aac528
  9. Moisan M., Shivarova A., Trivelpiece A.W. // Plasma Phys. 1982. V. 24. № 11. P. 1331.
  10. Moisan M., Zakrzewski Z. // J. Phys. D: Appl. Phys. 1991. V. 24. P. 1025.
  11. Borges C.F.M., Airoldi V.T., Corat E.J., Moisan M., Schelz S., Guay D. // Journal of Applied Physics. 1996. V. 80. № 10. P. 6013. https://doi.org/10.1063/1.363600
  12. Girka V., Girka I., Thumm M. // Surface Flute Waves in Plasmas, Springer Series on Atomic, Optical, and Plasma Physics 79. 2014. P. 129. https://doi.org/10.1007/978-3-319-02027-36
  13. Abbasi M.M., Shahrooz A. // Microwave and Optical Technology Letters. 2016. V. 59. № 4. P. 806. https://doi.org/10.1002/mop.30395
  14. Zhao J., Sun Z., Ren Yu., Song Lu, Wang S., Liu W., Yu Z., Wei Yu. // Journal of Physics D: Applied Physics. 2019. V. 52. № 29. P. 295202. https://doi.org/10.1088/1361-6463/ab1b0a
  15. Истомин Е.Н., Карфидов Д.М., Минаев И.М., Рухадзе А.А., Тараканов В.П., Сергейчев К.Ф., Трефи-лов А.Ю. // Физика плазмы. 2006. Т. 32. С. 423. https://doi.org/10.1134/S1063780X06050047
  16. Богачев Н.Н., Гусейн-заде Н.Г., Нефедов В.И. // Физика плазмы. 2019. Т. 45. № 4. С. 365.
  17. Rogers J., Asmussen J. // IEEE Trans. Plasma Sci. 1982. V. PS–10. № 1. P. 11. https://doi.org/0093-3813/82/0300-0011$00.75
  18. Wolinska-Szatkowska J. // J. Phys. D: Appl. Phys. 1988. V. 21. № 6. P. 937. https://doi.org/10.1088/0022-3727/21/6/012
  19. Rakem Z., Leprince P., Marec J. // Rev. Phys. Appl. (Paris). 1990. V. 25. № 1. P. 125. https://doi.org/10.1051/rphysap:01990002501012500
  20. Margot-Chaker J., Moisan M., Chaker M., Glaude V.M.M., Lauque P., Paraszczak J., and Sauve G. // J. Appl. Phys. 1982. V. 66. № 9. P. 4134. https://doi.org/10.1063/1.343998
  21. Солнцев Г.С., Булкин П.С., Мокеев М.В., Цветко-ва Л.И. // Вестник Московского университета. 1997. Серия 3. № 6. С. 36.
  22. Moisan M., Beaudry C., Lepprince P. // Physics Letters A. 1974. V. 50. № 2. P. 125. https://doi.org/10.1016/0375-9601(74)90903-7
  23. Жуков В.И., Карфидов Д.М., Сергейчев К.Ф. // Физика плазмы. 2020. Т. 46. № 8. С. 1. https://doi.org/10.31857/S0367292120080120
  24. Голант В.Е. Сверхвысокочастотные методы исследования плазмы. М.: Наука, 1968.
  25. Chen Z.S., Ma L.F., Wang J.C. // Int. J. Antennas Propag. 2015. 736090 (2015). https://doi.org/10.1155/2015/736090
  26. Zhelyazkov I., Atanassov V. // Physics Reports. 1995. V. 255. № 2–3. P. 79. https://doi.org/10.1016/0370-1573(94)00092-H
  27. Nowakowska H., Lackowski M., Moisan M. // IEEE Trans. Plasma Sci. 2020. V. 48. № 6. P. 2106. https://doi.org/10.1109/TPS.2020.2995475
  28. Vikharev A., Böhle A., Ivanov O., Kolisko A., Kortsha-gen U., and Schlüter H. // J. Phys. D: Appl. Phys. 1996. V. 29. P. 369.
  29. Ida Y., Hayashi K. // Journal of Applied Physics. 1971. V. 42. № 6. P. 2423.
  30. Гольдштейн Л.Д., Зернов Н.В. Электромагнитные волны и поля. М.: Советское радио, 1971. С. 554.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (116KB)
3.

Baixar (68KB)
4.

Baixar (128KB)
5.

Baixar (100KB)
6.

Baixar (55KB)
7.

Baixar (166KB)
8.

Baixar (123KB)
9.

Baixar (99KB)
10.

Baixar (52KB)
11.

Baixar (615KB)
12.

Baixar (130KB)
13.

Baixar (62KB)
14.

Baixar (224KB)

Declaração de direitos autorais © В.И. Жуков, Д.М. Карфидов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies