Surface Recombination of Hydrogen Atoms on Pyrex in Medium Pressure Hydrogen Plasma

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The probability of heterogeneous recombination of hydrogen atoms, γH , on the surface of a Pyrex tube in a direct current medium-pressure pure hydrogen (2–7 Torr) glow discharge was measured in dependence on the pressure and discharge current for two wall temperatures. It was found that there is no dependence of the recombination probability on the pressure and discharge current provided that the tube is pre-trained in a hydrogen discharge. During the tube training, γH decreases with a characteristic time to reach a steady-state value of ~30 minutes. Analysis of the possible recombination mechanism using quantum chemical methods revealed that the recombination of hydrogen atoms on the Pyrex surface is associated with OH radicals and oxygen vacancies on the surface, and the dynamics of γH can be explained by the recombination of surface OH radicals during tube training.

Авторлар туралы

I. Ziganshin

Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State University

Email: ilyaziganshin@gmail.com
Moscow, Russia

K. Galiullin

Lomonosov Moscow State University

Moscow, Russia

D. Lopaev

Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State University

Email: d.lopaev@gmail.com
Moscow, Russia

E. Kirillov

Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State University

Moscow, Russia

A. Rakhimov

Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State University

Moscow, Russia

Әдебиет тізімі

  1. Adamovich I., Agarwal S., Ahedo E., Alves L.L., Baalrud S., Babaeva N., Bogaerts A., Bourdon A., Bruggeman P.J., Canal C. et al. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 373001. https://doi.org/10.1088/1361-6463/ac5e1c
  2. Alves L.L., Becker M.M., van Dijk J., Gans T., Go D.B., Stapelmann K., Tennyson J., Turner M.M., Kushner M.J. // Plasma Sources Sci. Technol. 2023. V. 32. P. 023001. https://doi.org/10.1088/1361-6595/acb810
  3. Turner M.M. // Plasma Processes Polymers. 2017. V. 14. P. 201600121. https://doi.org/10.1002/ppap.201600121
  4. Bonitz M., Filinov A., Abraham J.W., Balzer K., KUh-lert H., Pehlke E., Bronold F.X., Pamperin M., Becker M., Loffhagen D., Fehske H. // Front. Chem. Sci. Eng. 2019. V. 13. P. 201.
  5. Kim Y.C., Boudart M. // Langmuir. 1991. V. 7. P. 2999.
  6. Booth J.P., Guaitella O., Chatterjee A., Drag C., Guerra V., Lopaev D., Zyryanov S., Rakhimova T., Voloshin D., Mankelevich Y. // 2019. V. 28. P. 055005. https://doi.org/10.1088/1361-6595/ab13e8
  7. Gubarev V., Lopaev D., Zotovich A., Medvedev V., Krainov P., Astakhov D., Zyryanov S. //J. Appl. Phys. 2022. V. 132. P. 193301.
  8. Lopaev D.V., Mankelevich Y.A., Kropotkin A.N., Voloshin D.G., Rakhimova T.V. // Plasma Sources Sci. Technol. 2024. V. 33. P. 085002.
  9. Woodworth J.R., Riley M.E., Amatucci V.A., Hamilton T.W., Aragon B.P. // J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films. 2001. V. 19. P. 45.
  10. Ziganshin I., Galiullin K.R., Lopaev D., Kirillov E.A., Rakhimov A.T. // Plasma Sources Sci. Technol. 2025. V. 34. P. 035007. https://doi.org/10.1088/1361-6595/adbc1b
  11. Trukhin A.N. // J. Non Crystal Solids. 1992. V. 149. P. 32.
  12. Lopaev D.V., Smirnov A.V. // Plasma Phys. Reps. 2004. V. 30. P. 882.
  13. Anon NIST Atomic Spectra Database. https://doi.org/10.18434/T4W30F
  14. Бровикова И.Н., Галнаскаров Э.Г., Рыбкин В.В., Бессараб А.Б. // Теплофизика высоких температур. 1998. Т. 37. С. 706.
  15. Smirnov K.S. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 6929.
  16. Liu H., Kaya H., Lin Y.-T., Ogrinc A., Kim S.H. // J. American Ceramic Soc. 2022. V. 105. P. 2355.
  17. Ye X., Hu S., Zhang G., Yan Y., Sun Q., Hu Y. // J. Phys. Chem. C. 2025. V. 129. P. 231.
  18. Macko P., Veis P., Cernogora G. // Plasma Sources Sci. Technol. 2004. V. 13. P. 251.
  19. Afonso J., Vialetto L., Guerra V., Viegas P. // J. Phys. D: Appl. Phys. 2023. V. 57. P. 04LT01. https://doi.org/10.1088/1361-6463/ad039b
  20. Rutigliano M., Gamallo P., Sayos R., Orlandini S., Cacciatore M. // Plasma Sources Sci. Technol. 2014. V. 23. P. 045016.
  21. Karton A. //J. Phys. Chem. A. 2019. V. 123. P. 6720.
  22. Butera V. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 7950.
  23. Truhlar D.G., Klippenstein S.J. //J. Phys. Chem. 1996. V. 100. P. 12771. https://doi.org/10.1021/jp953748q
  24. Granovsky A.A. Firefly version 8.
  25. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. J. Comput. Chem. 1993. V. 14. P. 1347.
  26. Beletsan O.B., Gordiy I., Lunkov S.S., Kalinin M.A., Alkhimova L.E., Nosach E.A., Ilin E.A., Bespalov A.V., Dallakyan O.L., Chamkin A.A. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 13850.
  27. Bochenkova A.V., Firsov D.A., Nemukhin A.V. // Chem. Phys. Lett. 2005. V. 405. P. 165.
  28. Pritchard B.P., Altarawy D., Didier B., Gibson T.D., Windus T.L. // J. Chem. Information Modelling. 2019. V. 59. P. 4814.
  29. Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. V. 113. P. 96.
  30. Becke A.D. //J. Chem. Phys. 1993. V. 98. P. 5648.
  31. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
  32. Caldeweyher E., Mewes J.-M., Ehlert S., Grimme S. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 8499.
  33. Saitow M., Becker U., Riplinger C., Valeev E.F., Neese F. // J. Chem. Phys. 2017. V. 146. P. 164105. https://doi.org/10.1063/1.4981521
  34. Riplinger C., Sandhoefer B., Hansen A., Neese F. // J. Chem. Phys. 2013. V. 139. P. 134101. https://doi.org/10.1063/1.4821834
  35. Karton A. // J. Phys. Chem. A. 2019. V. 123. P. 6720.
  36. Neese F. // WIREs Computat. Molecular Sci. 2022. V. 12. P. e1606. https://doi.org/10.1002/wcms.1606
  37. Sandler I., Chen J., Taylor M., Sharma S., Ho J. // J. Phys. Chem. A. 2021. V. 125. P. 1553.
  38. Feller D., Peterson K.A. // J. Chem, Phys. 2007. V. 126. P. 114105.
  39. Ramabhadran R., Raghavachari K. // J. Comput. Chem. 2015. V. 37. P. 286. https://doi.org/10.1002/jcc.24050
  40. Denisov E.T. // Russian Chem. Revs. 2000. V. 69. P. 153.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).