Генерация мягкого рентгеновского и вакуумного ультрафиолетового излучения при взаимодействии водородного плазменного потока с газовой струей

Мұқаба
  • Авторлар: 1,2, 3, 3,4, 1,2, 1,2, 1, 1, 1, 1,5, 3,4
  • Мекемелер:
    1. ГНЦ РФ “Троицкий институт инновационных и термоядерных исследований”
    2. НИУ “Московский физико-технический институт”
    3. Объединенный институт высоких температур РАН
    4. НИЯУ “Московский инженерно-физический институт”
    5. НИУ “Московский энергетический институт”
  • Шығарылым: Том 49, № 8 (2023)
  • Беттер: 807-812
  • Бөлім: SPACE PLASMA
  • URL: https://journals.rcsi.science/0367-2921/article/view/139596
  • DOI: https://doi.org/10.31857/S0367292123600358
  • EDN: https://elibrary.ru/VYBVZA
  • ID: 139596

Дәйексөз келтіру

Толық мәтін

Аннотация

Представлены результаты исследований, направленных на создание компактного источника мягкого рентгеновского и вакуумного ультрафиолетового излучения при столкновении мощного плазменного потока с газовой струей. В проведенных экспериментах водородный плазменный поток с энергосодержанием ≈50 кДж и длительностью 10–15 мкс генерировался импульсным электродинамическим ускорителем. Поток с плотностью ≈6 × 1015 см–3 двигался со скоростью (2–4) × 107 см · с–1 в продольном магнитном поле с индукцией до 2 Тл и взаимодействовал с плоской сверхзвуковой газовой струей. Максимальная плотность газа, азота или неона, в струе достигала 1017 см–3. Продемонстрировано образование компактного излучающего слоя плазмы толщиной 3–5 см, двигающегося по ходу водородного плазменного потока со скоростью ≈3 × 106 см · с–1. В ряде экспериментов для локализации области взаимодействия плазменного потока и газовой струи в зоне, контролируемой диагностическими средствами, использовалась пластина вольфрама в качестве препятствия, ограничивающего смещение излучающей плазмы вдоль магнитного поля. С помощью мягкой рентгеновской обскурографии и спектроскопии получены данные относительно генерации излучения из зоны взаимодействия водородного плазменного потока и газовой струи. Приводятся результаты измерения энергии излучения из образующейся плазмы: ≈2 кДж в случае азотной струи и ≈3 кДж в случае неоновой. Численное моделирование линейчатого излучения многозарядных ионов и последующее сопоставление расчетных и экспериментальных данных позволило оценить электронную температуру азотной и неоновой плазмы, образующейся при взаимодействии водородного плазменного потока с газовой струей на уровне ≥40 эВ.

Авторлар туралы

ГНЦ РФ “Троицкий институт инновационных и термоядерных исследований”; НИУ “Московский физико-технический институт”

Хат алмасуға жауапты Автор.
Email: toporkov@triniti.ru
Россия, Москва; Россия, Москва

Объединенный институт высоких температур РАН

Хат алмасуға жауапты Автор.
Email: ryazantsev.serj@gmail.com
Россия, Москва

Объединенный институт высоких температур РАН; НИЯУ “Московский инженерно-физический институт”

Email: igor.skobelev@gmail.com
Россия, Москва; Россия, Москва

ГНЦ РФ “Троицкий институт инновационных и термоядерных исследований”; НИУ “Московский физико-технический институт”

Email: igor.skobelev@gmail.com
Россия, Москва; Россия, Москва

ГНЦ РФ “Троицкий институт инновационных и термоядерных исследований”; НИУ “Московский физико-технический институт”

Email: igor.skobelev@gmail.com
Россия, Москва; Россия, Москва

ГНЦ РФ “Троицкий институт инновационных и термоядерных исследований”

Email: igor.skobelev@gmail.com
Россия, Москва

ГНЦ РФ “Троицкий институт инновационных и термоядерных исследований”

Email: igor.skobelev@gmail.com
Россия, Москва

ГНЦ РФ “Троицкий институт инновационных и термоядерных исследований”

Хат алмасуға жауапты Автор.
Email: vvgavril@triniti.ru
Россия, Москва

ГНЦ РФ “Троицкий институт инновационных и термоядерных исследований”; НИУ “Московский энергетический институт”

Email: igor.skobelev@gmail.com
Россия, Москва; Россия, Москва

Объединенный институт высоких температур РАН; НИЯУ “Московский инженерно-физический институт”

Хат алмасуға жауапты Автор.
Email: igor.skobelev@gmail.com
Россия, Москва; Россия, Москва

Әдебиет тізімі

  1. Гаврилов В.В., Еськов А.Г., Житлухин А.М., Коч-нев Д.М., Пикуз С.А., Позняк И.М., Рязанцев С.Н., Скобелев И.Ю., Топорков Д.А., Умрихин Н.М. // Физика плазмы. 2018. Т. 44. С. 730.
  2. Гаврилов В.В., Еськов А.Г., Житлухин А.М., Коч-нев Д.М., Пикуз С.А., Позняк И.М., Рязанцев С.Н., Скобелев И.Ю., Топорков Д.А., Умрихин Н.М. // Физика плазмы. 2020. Т. 46. С. 606.
  3. http://sildet.ru/source/pdf/fduk8uvc.pdf.
  4. Gavrilov V.V., Eskov A.G., Zhitlukhin A.M., Kochnev D.M., Pikuz S.A., Poznyak I.M., Ryazantsev S.N., Skobe-lev I.Yu., Toporkov D.A., Umrikhin N.M. // J. Phys.: Conf. Ser. 2017. V. 946. P. 012017.
  5. https://www.prism-cs.com/Software/PrismSPECT/overview.html.

© Russian Academy of Sciences, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).