QUASI-PERIODIC STRUCTURES OF THE LANGMUIR WAVES IN MODEL SPECTROGRAMS

Cover Page

Cite item

Full Text

Abstract

A self-consistent model combining the kinetic Vlasov equation governing the distribution function of the resonant particles and the Ampere-Maxwell law is presented. The nonresonant particles are taken into account via the dielectric permittivity in the linear approximation. The results of numerical simulations demonstrating the nonlinear evolution of the broad spectrum of waves induced by an unstable distribution of electrons in homogeneous and inhomogeneous plasma are analyzed. The frequency-time analysis of the electric field reveals the presence of quasi-periodic elements with increasing frequency. It is demonstrated that temporal modulation of the amplitude of the electric field appears due to selection of harmonics with equally spaced wavenumbers in the initial spectrum of the waves. This choice of harmonics gives rise to spatial periodic structures of the electric field that transform into temporal modulation seen in the spectrograms upon propagation.

About the authors

A. A Luzhkovskiy

Space Research Institute, Russian Academy of Sciences

Email: luzartyom@yandex.ru
Moscow, Russia

References

  1. Gentle K.W., Lohr J. // Phys. Fluids. 1973. V. 16. P. 1464. https://doi.org/10.1063/1.1694543
  2. McFarland M.D., Wong A.Y. // J. Plasma Phys. 1997. V. 4. P. 945. https://doi.org/10.1063/1.872209
  3. Briand C. // J. Plasma Phys. 2015. V. 81. https://doi.org/10.1017/s002237815000112
  4. Stasiewicz K., Holback B., Krasnoselskikh V., Boehm M., Bostrom R., Kintner P.M. // J. Geophys. Res.: Space Phys. 1996. V. 101. P. 21515. https://doi.org/10.1029/96ja01747
  5. Burinskaya T.M., Rusanov A.A., Rauch J.L., Miles A., Mogilevsky M.M., Trotignon J.G., Lefeuvre F., Sauvaud J.A. // Adv. Space Res. 2003. V. 31. P. 1247. https://doi.org/10.1016/s0273-1177(02)00937-7
  6. Schlatter N.M., Ivchenko N., Haggstrom I. // J. Geophys. Res.: Space Phys. 2014. V. 119. P. 8499. https://doi.org/10.1002/2013ja019457
  7. Kennel C.F., Scarf F.L., Coroniti F.V., Fredricks R.W., Gurnett D.A., Smith E.J. // Geophys. Res. Lett. 1980. V. 7. P. 129. https://doi.org/10.1029/g1007i002p00129
  8. Gurnett D.A., Hospodarsky G.B., Kurth W.S., Williams D.J., Bolton S.J. // J. Geophys. Res.: Space Phys. 1993. V. 98. P. 5631. https://doi.org/10.1029/92ja02838
  9. Graham D.B., Cairns I.H. // J. Geophys. Res.: Space Phys. 2015. V. 120. P. 4126. https://doi.org/10.1002/2015ja021120
  10. Kojima H., Furuya H., Usui H., Matsumoto H. // Geophys. Res. Lett. 1997. V. 24. P. 3049. https://doi.org/10.1029/97gl03043
  11. Kellogg P.J., Bale S.D. // J. Geophys. Res.: Space Phys. 2004. V. 109. https://doi.org/10.1029/2003ja010131
  12. Piša D., Hospodarsky G.B., Kurth W.S., Santolik O., Soucek J., Gurnett D.A., Masters A., Hill M.E. // J. Geophys. Res.: Space Phys. 2015. V. 120. P. 2531. https://doi.org/10.1002/2014ja020560
  13. Karpman V.I., Istomin J.N., Shklyar D.R. // Phys. Scripta. 1975. V. 11. P. 278. https://doi.org/10.1088/0031-8949/11/5/008
  14. Shklyar D.R., Matsumoto H. // Surv. Geophys. 2009. V. 30(2). P. 55. https://doi.org/10.1007/s10712-009-9061-7
  15. Fijalkow E. // Comput. Phys. Commun. 1999. V. 116. P. 319. https://doi.org/10.1016/s0010-4655(98)00146-5
  16. Nakamura T., Yabe T. // Comput. Phys. Commun. 1999. V. 120. P. 122. https://doi.org/10.1016/s0010-4655(99)00247-7
  17. Yabe T., Xiao F., Utsumi T. // J. Comput. Phys. 2001. V. 169. P. 556. https://doi.org/10.1006/jcph.2000.6625
  18. Pohn E., Shoucri M., Kamelander G. // Comput. Phys. Commun. 2005. V. 166. P. 81. https://doi.org/10.1016/j.cpc.2004.10.009
  19. Umeda T. // Nonlin. Processes Geophys. 2007. V. 14. P. 671. https://doi.org/10.5194/npg-14-671-2007
  20. Cheng C.Z., Knorr G. // J. Comput. Phys. 1976. V. 22. P. 330. https://doi.org/10.1016/0021-9991(76)90053-x
  21. Filbet F., Sonnendrucker E., Bertrand P. // J. Comput. Phys. 2001. V. 172. P. 166. https://doi.org/10.1006/jcph.2001.6818
  22. Umeda T., Ashour-Abdalla M., Schriver D. // J. Plasma Phys. 2006. V. 72. P. 1057. https://doi.org/10.1017/s0022377806005228
  23. Umeda T., Nariyuki Y., Kariya D. // Comput. Phys. Commun. 2012. V. 183. P. 1094. https://doi.org/10.1016/j.cpc.2012.01.011
  24. Yi D., Bu S. // J. Comput. Phys. 2017. V. 324. P. 1. https://doi.org/10.1016/j.cam.2017.04.019
  25. Crouseilles N., Mehrenberger M., Sonnendrucker E. // J. Comput. Phys. 2010. V. 229. P. 1927. https://doi.org/10.1016/j.jcp.2009.11.007
  26. Kuzichev I.V., Vasko I.Y., Agapitov O.V., Mozer F.S., Artemyev A.V. // Geophys. Res. Lett. 2017. V. 44. P. 2105. https://doi.org/10.1002/2017GL072536
  27. Vasko I.Y., Kuzichev I.V., Agapitov O.V., Mozer F.S., Artemyev A.V., Roth I. // Phys. Plasmas. 2017. V. 24. https://doi.org/10.1063/1.4989717
  28. Shustov P.I., Kuzichev I.V., Vasko I.Y., Artemyev A.V., Gerrard A.J. // Phys. Plasmas. 2021. V. 28. https://doi.org/10.1063/5.0029999
  29. Luzhkovskiy A.A., Shklyar D.R. // Phys. Plasmas. 2025. V. 32. https://doi.org/10.1063/5.0266890
  30. Landau L.D. // J. Phys. 1946. V. 10. P. 25. https://doi.org/10.3367/UFNr.0093.196711m.0527
  31. O’Neil T.M. // Phys. Fluids. 1965. V. 8. P. 2255. https://doi.org/10.1063/1.1761193
  32. Drummond W.E., Pines D. // Nucl. Fusion Suppl. 1962. V. Pt. 3. P. 1049.
  33. Vedenov A.A., Velikhov E.P., Sagdeev R.Z. // Nucl. Fusion Suppl. 1962. V. Pt. 2. P. 465.
  34. Pasmanik D.L., Titova E.E., Demekhov A.G., Trakhtengerts V.Y., Santolik O., Jiricek F., Kudela K., Parrot M. // Ann. Geophys. 2004. V. 22. P. 4351. https://doi.org/10.5194/angeo-22-4351-2004
  35. Sazhin S.S., Hayakawa M. // J. Atmos. Terr. Phys. 1994. V. 56. P. 735. https://doi.org/10.1016/0021-9169(94)90130-9
  36. Burtis W.J., Helliwell R.A. // Planet. Space Sci. 1976. V. 24. P. 1007. https://doi.org/10.1016/0032-0633(76)90119-7
  37. Santolik O., Gurnett D.A., Pickett J.S., Parrot M., Cornilleau-Wehrlin N. // Geophys. Res. Lett. 2004. V. 31. https://doi.org/10.1029/2003gl018757
  38. Trakhtengerts V.Y. // Ann. Geophys. 1999. V. 17. P. 95. https://doi.org/10.1007/s00585-999-0095-4
  39. Omura Y., Katoh Y., Summers D. // J. Geophys. Res.: Space Phys. 2008. V. 113. https://doi.org/10.1029/2007ja016222
  40. Tao X., Zonca F., Chen L., Wu Y. // Sci. China Earth Sci. 2019. V. 63. P. 78. https://doi.org/10.1007/s11430-019-9384-6
  41. Vlasov A.A. // J. Phys. (USSR) 1945. V. 9. P. 25.
  42. Akhiezer A.I., Akhiezer I.A., Polovin R.V., Sitenko A.G., Stepanov K.N. // Plasma Electrodinamics, v.1. Linear Theory. 1975.
  43. Mikhailovskii A.B. Theory of Plasma Instabilities, Vol. 1: Instabilities of a Homogeneous Plasma (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).