Comparative Analysis of High-Frequency Plasma Drivers with Various Protective Screens for Atomic Injectors with Multi-Second Pulse Duration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Atomic beam injection is one of the main methods of plasma heating in thermonuclear facilities. An injector of high-energy hydrogen atoms for plasma heating based on the acceleration and neutralization of negative hydrogen ions is being developed at the Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences. The injector uses a surface plasma source, in which a plasma flow is created using a radio-frequency driver: an induction radio-frequency (RF) discharge, ignited inside a cylindrical ceramic chamber when an RF voltage is applied to an external antenna. As a part of this work, a new version of the RF driver is being developed. A protective screen is used to prevent overheating and erosion of the ceramic wall of the driver. The operation of RF driver with different protective screens is studied. These screens reduce the efficiency of RF power transmission into the discharge, but make it possible the operation of the ion source in multi-second or steady-state pulses.

About the authors

V. A. Vointsev

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: d.gavrisenko@g.nsu.ru
630090, Novosibirsk, Russia

P. A. Finashin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: d.gavrisenko@g.nsu.ru
630090, Novosibirsk, Russia

D. Yu. Gavrisenko

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: d.gavrisenko@g.nsu.ru
630090, Novosibirsk, Russia

I. V. Shikhovtsev

Институт ядерной фиBudker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciencesзики им. Г.И. Будкера СО РАН

Email: d.gavrisenko@g.nsu.ru
630090, Novosibirsk, Russia

Yu. I. Belchenko

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: d.gavrisenko@g.nsu.ru
630090, Novosibirsk, Russia

A. I. Gorbovskiy

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: d.gavrisenko@g.nsu.ru
630090, Novosibirsk, Russia

A. A. Kondakov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: d.gavrisenko@g.nsu.ru
630090, Novosibirsk, Russia

O. Z. Sotnikov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: d.gavrisenko@g.nsu.ru
630090, Novosibirsk, Russia

A. L. Sanin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: d.gavrisenko@g.nsu.ru
630090, Novosibirsk, Russia

References

  1. SotnikovO., Ivanov A., Belchenko Yu., Gorbovsky A., Deichuli P., Dranichnikov A., Emelev I., Kolmogorov V., Kondakov A., Sanin A., Shikhovtsev I. // Nuclear Fusion. 2021. V. 61. № 11. 116017.
  2. Shikhovtsev I., Abdrashitov G., Belchenko Yu., Belov V., Davydenko V., Gorbovsky A., Ivanov A., Kapitonov V., Kondakov A., Mishagin V., Sanin A., Sotnikov O., Shu-bin E. // AIP. Conf. Proc. 2018. V. 2052. 040016.
  3. Prokhorov I.A., Abdrashitov G.F., Averbukh I.I., Be-lov V.P., Davydenko V.I., Ivanov A.A., Kapitonov V.A., Kolmogorov V.V., Kondakov A.A., Shikhovtsev I.V., Sorokin A.V., Tkachev A.A. // Fusion Science and Technology. 2013. V. 63 (1T). P. 349.
  4. Fasel D., Andrebe Y., Dubray J., Karpushov A., Kolmogorov V., Marletaz B., Marmillod P., Muehle L., Perez A., Shikhovtsev I., Siravo U. // Fusion Engineering and Design.2017. V. 123. P. 331.
  5. Sorokin A., Belov V., Davydenko V., Deichuli P., Ivanov A., Podyminogin A., Shikhovtsev I., Shulzhenko G., Stupishin N., Tiunov M. // Rev. Sci. Instrum. 2010. V. 81. 02B108.
  6. Speth E., Ciric M., Feist J.H., Frank P., Heinemann B., Kraus W., Probst F., Riedl R., Trainham R., Vollmer O., Wilhelm R. // Fusion Engineering and Design. 1999. V. 46. Iss. 2–4. P. 383.
  7. McNeely P., Äkäslompolo S., Auerweck W., Drider Y., Ford O.P., Hartmann D.A., Heinemann B., Heinrich S., Hopf C., Kairys R., Obermayer S., Riedl R., Rong P., Rust N., Schroeder R., Wolf R.C. // Fusion Engineering and Design. 2020. V. 161.111997.
  8. Marcuzzi D., Agostinetti P., Dalla Palma M., Falter H.D., Heinemann B., Riedl R. 2007. V. 82. Iss. 5–14. P. 798.
  9. Heinemann B. et al. // New J. Phys. 2017. V. 19.015001.
  10. Yuming Gu, Yahong Xie, Jianglong Wei, Yongjian Xu, Jun Li, Caichao Jiang, Lizhen Liang, Yuanlai Xie, Chundong Hu // Rev Sci Instrum.2019. V. 90. 113315.
  11. Sen P. Principles of electric machines and power electronics. N.Y.: John Wiley & Sons, 1997. P. 64.
  12. Атабеков Г.И. Основы теории цепей. СПб.: Лань, 2009.
  13. Гоноровский И.С. Радиотехнические цепи и сигналы / Уч. для радиотехнических вузов и факультетов. М.: Сов. радио, 1963.
  14. Воинцев В.А., Гаврисенко Д.Ю., Кондаков А.А., Сотников О.З., Финашин Р.А. // Сибирский физический журнал. 2022. V. 17. № 3. P. 5.

Supplementary files


Copyright (c) 2023 Д.Ю. Гаврисенко, И.В. Шиховцев, Ю.И. Бельченко, А.И. Горбовский, А.А. Кондаков, О.З. Сотников, А.Л. Санин, В.А. Воинцев, Р.А. Финашин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies