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Abstract. Using the Sagdeev pseudopotential method, the distribution functions of background ions 
disturbed by ion-acoustic solitons for the case of cold ions were calculated. The distribution functions 
by velocities and kinetic energies were analyzed. Explicit formulas valid for solitons of arbitrary 
amplitude were obtained. It was shown that solitons form a strongly nonequilibrium plasma in their 
vicinity. The results were compared with previously obtained analytical calculations and modeling 
results. 
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1. INTRODUCTION

The analysis of the influence of plasma waves on the distribution functions of its charged 

particles is important from both fundamental and applied points of view [1–4]. For plasma solitons of 

the acoustic type, this problem was discussed in [5–10]. As is known, ion-acoustic solitons are stable 

solitary waves of compression or rarefaction of ion density, propagating in space without changes in 

shape [11–15]. In [5], the problem was solved within the framework of the Vlasov equations (which 

is the most general approach), the results were obtained in the small-amplitude approximation, the 

velocity distribution functions for charged particles were used as intermediate calculations and their 

properties were not analyzed specifically. In [6, 8–10], the velocity and energy distribution functions 

perturbed by solitons were specifically studied for plasma with cold ions. The initial (unperturbed) 

velocity of all ions in this case was zero. Solitons perturb the ion velocity in their vicinity. Knowing 

the soliton profile, all the parameters of the motion of any ion can be calculated at any moment in 

time, which makes the problem under study deterministic (in contrast to the stochastic problem of 
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warm ions). For the case of cold ions, the Vlasov equations can be replaced by the hydrodynamic 

equations and the single-particle approximation. In the calculations [6–10], both averaging over an 

ensemble of particles (by numerical modeling) and time averaging for a single particle using the 

ergodic hypothesis were used. In the second case, explicit formulas were obtained to describe the 

perturbed distribution functions. Nevertheless, the obtained expressions either required the use of 

numerical methods or were valid for small-amplitude solitons. The results obtained showed that the 

ion distribution function over the components (projections) of velocity (initially equilibrium), 

perturbed by compression solitons, has an asymmetric nonequilibrium shape in the vicinity of the 

wave. As it turned out, the shape of the perturbed distribution function is similar to the distribution 

function of plasma with an ion beam. The integral of the distribution function over the velocity 

components turned out to be different from zero, which indicates a one-way transfer of ions by ion-

acoustic solitons. The latter consequence is completely consistent with the results of [16–20]. In the 

indicated works, it was shown in various ways that conservative plasma compression solitons carry 

out a one-way transfer of charged particles over a finite distance in the direction of their motion. 

In the proposed work, using time averaging (based on the ergodic hypothesis), analytical 

formulas have been obtained to describe velocity and energy distribution functions perturbed by 

solitons, which are valid for arbitrary amplitudes. Graphs of the calculated functions for solitons of 

different amplitudes have been constructed. The obtained analytical expressions are compared with 

approximate expressions valid for small amplitudes, as well as with the results of numerical modeling. 

Only ion distribution functions are considered, while electrons are assumed to be in equilibrium 

(Boltzmann).    

2. THEORETICAL MODEL  

To verify our results, we will use comparison with already known results [6, 8, 9]. Let us 

consider a classical one-dimensional hydrodynamic model of a collisionless plasma containing cold 

ions T i =0 and hot equilibrium electrons with temperature e iT T  . We will assume that the magnetic 

field is absent or parallel to the direction of wave propagation. The system of hydrodynamic equations 

can be written as  
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Here N i , N e — denote ion and electron concentrations normalized to the unperturbed ion (electron) 

concentration n 0 = n 0i = n 0e ; υ i — hydrodynamic ion velocity normalized to the ion-sound velocity 

/s e iC T m=  , m i — ion mass; Φ / ee Tϕ=  — normalized electrostatic potential of the wave, e — 

absolute electron charge, ϕ  — dimensional potential, which can be described by the known 

expression /E xϕ= −∂ ∂  for the electric field. The time and spatial coordinates t, X are normalized to 

1
iω
−  (where 2

04 /i in e mω π=  — ion plasma frequency) and to Dλ  , where 2
0/ 4D eT e nλ π=  — 

Debye radius.  

The system of equations (1)-(4) contains soliton solutions that can be found by various 

methods. For small amplitudes, it can be described by the KdV equation [21, 22], wherein the profile 

of the ion-acoustic soliton is expressed as follows:  

 ( ) 2
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Δ
X Mtx t − =  

 
 (5) 

where ( )0Φ 3 1M= −  is the soliton amplitude, and   0Δ 6 / Φ=  is its width, M=V/C s is the Mach 

number, V is the soliton velocity in the stationary coordinate system. In [9], using equation (5), an 

explicit formula was obtained for describing the ion velocity distribution function in the vicinity of a 

compression ion-acoustic soliton, which has the following form:  
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Here T is the averaging time duration. Formula (6) is valid for solitons with small amplitude Φ 0 ≤0.5 

[9].  

We are interested in solutions of arbitrary amplitude. For our purposes, we will use Sagdeev's 

pseudopotential method, which is suitable for describing the stationary problem. We will assume that 

the soliton has passed all stages of evolution and moves at a constant velocity. By introducing a new 

variable X Mtξ = −  , which corresponds to the transition to a coordinate system moving with the 

wave, the system (1)-(4) can be reduced to a single Poisson equation [23]  
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where ( ) 2Φ / 2ΦiN M M= −  is the normalized ion concentration for the stationary case [16, 23]. 

A single integration of (7) with respect to Φ, taking into account the boundary conditions d Φ/ dξ =0 

at Φ=0, gives a formula for describing Sagdeev's pseudopotential, U (Φ) [23]:  
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or  

 ( ) ( ) ( )Φ 2Φ 1 2Φ .U e M M M= − − − −  (9) 

Profiles of ion-acoustic solitons of arbitrary amplitude can be found by numerical integration of 

equations (7) or (8) using, for example, the 4th-order Runge-Kutta method. Figure   1 shows the 

soliton potential profiles found using the KdV equation and numerically by the Runge-Kutta (RK) 

method for different Mach numbers.  

 Figure 1 demonstrates the classical properties of solitons. Specifically, with increasing soliton 

velocity (Mach number), its amplitude Φ 0 increases and its width Δ decreases. In the considered two-

component model, ion-acoustic solitons can exist in the Mach number range from 1 to 1.6 [6, 8, 23] 

with amplitudes up to Φ 0 ≈1.6. The KdV equation adequately describes solitons with amplitude Φ 0 

≤0.5. Having soliton profiles Φ( X ), we can proceed to calculate the perturbed distribution functions.  

3. PERTURBED VELOCITY AND KINETIC ENERGY DISTRIBUTION FUNCTIONS FOR 

BACKGROUND IONS  

To the left and right of a conservative (classical) soliton, the states of the medium (plasma) are 

identical. As we move away from the soliton center, the plasma quickly (exponentially) returns to an 

unperturbed state. This means that everywhere except for some vicinity of the solitary wave (tens to 

hundreds of Dλ  ), the plasma can be considered in equilibrium. It should be noted that for the case of 

cold ions, their Maxwellian distribution over velocity components and energy transforms into the 

Dirac delta function. Following the reasoning in [8-10], we will analyze the perturbation of 

distribution functions in the plasma region with the soliton located at its center. As noted in [9], in 



practice it is sufficient for the soliton to be completely within the studied plasma region; however, 

theoretical analysis is simpler to perform for the case of central symmetry.  

Let us introduce the notation ( )ifυ υ  — the ion distribution function with respect to velocity 

components, ( )W if υ  — the ion distribution function with respect to kinetic energies. Let us first 

consider ( )ifυ υ  . The required function can be found using the known formulas  
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Formula (10) is valid when averaging over an ensemble of ions, formula (11) — when averaging over 

time for a single ion (under the condition of plasma ergodicity). Here iυ  — the velocity of ions along 

the x axis, ΔN  — the number of particles with velocities in the range from iυ  to Δi iυ υ+ , N  — the 

number of ions in the considered region (in the ensemble), Δt  — the time during which the selected 

ion has a velocity in the range from iυ  to Δi iυ υ+  , T  — the time over which the averaging is 

performed. In practice, T corresponds to the temporal resolution of measuring instruments. Analysis 

( )ifυ υ  using formulas (10) and (11) is in complete agreement, as shown in works [6–10].  

 In our work, we will focus on finding the exact formula for ( )ifυ υ  using time averaging for 

the motion of a single test ion (using formula (11)), interacting with an ion-acoustic soliton. The posed 

problem is schematically shown in Fig. 2.  

From Fig. 2, it can be seen that as the soliton moves from left to right, it interacts with an 

arbitrarily selected background ion for some time and disturbs its dynamic parameters. The ion is 

displaced forward by several Debye radii after the soliton passes, while its initial and final velocities 

remain equal to zero [18]. The motion parameters of the selected ion will be used for time averaging. 

To apply formula (11), we will need the dependence ( )i tυ  , which we will find from Newton's second 

law written for a test ion in the electric field of the soliton i im e=a E  . In normalized form, we have  
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or taking into account X Mtξ = − ; / /X ξ∂ ∂ = ∂ ∂  for a stationary coordinate system  
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For the analysis of solitons with arbitrary amplitude, it is necessary to use the numerical solution for 

the potential Φ( X,t ) in (13). The corresponding solutions are presented in the insets to Fig. 2 as 

dependencies X(t) and ( )i tυ  at M =1.05. The problem was solved with the following initial conditions: 

X (0)=40, ( )0 0iυ =  . In the case under consideration, the ion reaches maximum velocity at t =39. The 

numerical integration parameters correspond to those presented in Fig. 4 in [8]. Although the 

numerical solutions are exact, they do not allow obtaining the required analytical expressions. Below 

we describe a methodology for obtaining the necessary formulas without using numerical methods.  

In the limit Δ 0t →  formula (11) can be written in differential form  
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dtf
Tdυ υ
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=                                                 (14)  

The factor "2" corresponds to the case of central symmetry. A detailed derivation of formula 

(14) can be found in [8]. Formula (14) comprehensively describes the perturbed distribution function 

for solitons of arbitrary amplitude; however, in the general case, it requires the use of numerical 

methods, since the dependence υ i ( t ) is determined numerically (Fig. 2). For small-amplitude solitons, 

the desired function ( )ifυ υ  was found in [8, 9] using the Sagdeev pseudopotential expansion method 

and the KdV equation. Let us proceed to describe the general methodology for obtaining the necessary 

formulas without using numerical methods.  

Let us follow the logic of reasoning [8, 9]. To solve equation (14), we need the dependence of 

the derivative / idt dυ  on the parameter iυ  . According to the law of velocity addition, we have 

i i Mυ υ′ = −  , where iυ′  is the ion velocity in the moving coordinate system. The conservative nature 

of the field leads to the conservation of mechanical energy  
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In paper [8], formula (16) was obtained by integrating (13).   Differentiation of (15) with respect to ξ  
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Further, taking into account the law of velocity addition i i Mυ υ′ = −  , and expressing  from (15), 

and 2 2ΦM −  from (16), we get  
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or, considering (14), finally  
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Formula (20) can be rewritten as ( ) ( )2 / ( 2 Φ )if T Uυ υ = −  , where ( )Φ iυ  is determined by equation 

(15). Figure   3 shows graphs of the function ( )ifυ υ  , obtained using three methods: using the 

approximate formula (6) (first obtained in [9]); using the exact formula (20); and by particle ensemble 

modeling using the methodology from [6, 8]. The graph of the function ( )ifυ υ  , obtained from 

expression (20), valid for arbitrary amplitudes, is filled in since it is considered the reference. The 

approximate dependencies are represented by dashed curves.  

As can be seen from Fig. 3, the results obtained using formula (20) completely coincide with 

the simulation results [8]. The approximate formula (6) remains valid for small amplitudes. The 



parameters of the function ( )ifυ υ  are the Mach number M and the averaging time T . The domain of 

definition ( )ifυ υ  is in the range 0 i Mυ< <  . Indeed, in papers [6, 16, 18], it is shown that in the 

electric field of a classical ion-acoustic compression soliton, ions can only move with a positive 

velocity iυ >  0. On the other hand, the upper boundary i Mυ <  is determined by the subcriticality of 

the considered solitons. At i Mυ ≥  , wave breaking occurs and multi-stream motion forms.  

Using (20), it is possible to find the average value of the ionic current density induced by 

solitons, iJ  . In normalized form, we have ( )
0

M

i i i iJ f dυυ υ υ= ∫  . For M =1.05, T =71 we get 0.26iJ =  

, which is in complete agreement with the results of [6], where the value iJ  was calculated for a group 

of identical solitons with a period of T =71 at M =1.05. There is also agreement with the results of 

[16], where the value iJ  was obtained using hydrodynamic equations. In turn, knowing iJ  it is easy 

to calculate the total electric ionic charge transferred by a soliton through a unit area, i iQ J T=  . It is 

straightforward to verify that the obtained dependence ( ) ( )0~ Φi iQ M Q  is consistent with the 

dependence ( ) ( )0 0Φ ΦiX Q∆ =  , calculated in [18] by different methods (here X∆  is the distance of 

ion transfer by a soliton).      

Let's find an expression for the distribution function by kinetic energies. Knowing the function 

( )ifυ υ  we can find the function ( )W if W  , using the known relationship [7, 10]  

 ( ) ( ) .t i i t i if d f W dWυ υ =  (21) 

Considering that 2 / 2i iW υ=  we have  
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The domain of the function ( )
iW if W  is determined by the inequality 0< W i < M 2 /2 .  

Figure 4 shows the graphs of ( )W if W  for different Mach numbers. For comparison, the graphs 

present the results from [10], obtained through ensemble modeling and using an approximate formula 

derived from the KdV equation.  



From Fig.   4, it can be seen that the results obtained using formula (22) are in complete 

agreement with the simulation results from [10]. The approximate formula (14) from [10] remains 

valid for small amplitudes.  

As can be seen from Fig. 3 and 4, the distribution functions of background ions become highly 

non-equilibrium in the vicinity of solitons. They correspond to the transport of ions by the soliton 

(excitation of soliton currents) and have a "beam-like" form. The presence of a charged particle flow 

in the vicinity of a soliton can cause the development of streaming instabilities [24]. In particular, 

electron drift with velocity υ e > C s   can cause drift ion-acoustic instability. With increasing drift 

velocity, Buneman instability can develop. However, in our model, electrons were assumed to be in 

equilibrium, and their flows were set to zero. The soliton currents considered by us can cause 

streaming dust-acoustic instabilities [25]. This situation is possible in dusty plasma in the presence of 

ion-acoustic solitons [13]. Ion flows can also affect the charge of dust particles in dusty plasma, which 

is one of the causes of instabilities [26]. Detailed analysis of such problems is a topic for future 

work.       

CONCLUSION  

Based on the Sagdeev pseudopotential method, an analytical expression is obtained describing 

the distribution functions of background ions perturbed by an ion-acoustic soliton in terms of velocity 

components f υ ( υ i ) and kinetic energies f W ( W i ). It was previously shown [5-10] that ion-acoustic 

solitons strongly perturb the initially equilibrium distribution function of ions. In the region occupied 

by solitons, such a function has a "beam-like" form [6-10]. The obtained results are valid only for cold 

plasma fractions. For the case of warm ions, they can only be used as estimates. It is expected that 

accounting for the thermal motion of ions will lead to broadening of the maxima of the distribution 

functions. The analytical formulas (20), (22) are simple to apply, they can be used to interpret 

experimental data, as well as to develop new methods of plasma diagnostics. It is worth noting that 

the approach we used is quite universal and can be used to describe the properties of electron- and 

dust-acoustic solitons.    
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FIGURE CAPTIONS  

Рис. 1.Soliton potential profiles at different Mach numbers: "RK" - numerical simulation using the 

Runge-Kutta method; "KdV" - analysis using the Korteweg-de Vries equation according to formula 

(5).  

Рис. 2.Scheme of interaction between a test ion and an ion-acoustic soliton; the insets show the 

dependencies of X ( t ) and υ i ( t ) for the test ion. Circles represent the initial and final positions of 

the test ion.    

Рис. 3.Perturbed distribution functions ( )ifυ υ  at T =38 and at different Mach numbers, calculated 

using various methods: using approximate formula (6) - dashed curve; using exact formula (20) - filled 

solid curve; using particle ensemble simulation according to the methodology [6, 8] - triangles.  

Рис. 4.Perturbed distribution functions ( )W if W at T =38 and at different Mach numbers, calculated 

using various methods: using approximate formula (14) from [10] - dashed curve; using exact 

formula (22) - filled solid curve; using particle ensemble simulation according to the methodology 

[10] - triangles. 
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