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Abstract. Using the Sagdeev pseudopotential method, the distribution functions of background ions
disturbed by ion-acoustic solitons for the case of cold ions were calculated. The distribution functions
by velocities and kinetic energies were analyzed. Explicit formulas valid for solitons of arbitrary
amplitude were obtained. It was shown that solitons form a strongly nonequilibrium plasma in their
vicinity. The results were compared with previously obtained analytical calculations and modeling
results.
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1. INTRODUCTION

The analysis of the influence of plasma waves on the distribution functions of its charged
particles is important from both fundamental and applied points of view [1—4]. For plasma solitons of
the acoustic type, this problem was discussed in [5—10]. As is known, ion-acoustic solitons are stable
solitary waves of compression or rarefaction of ion density, propagating in space without changes in
shape [11-15]. In [5], the problem was solved within the framework of the Vlasov equations (which
is the most general approach), the results were obtained in the small-amplitude approximation, the
velocity distribution functions for charged particles were used as intermediate calculations and their
properties were not analyzed specifically. In [6, 8—10], the velocity and energy distribution functions
perturbed by solitons were specifically studied for plasma with cold ions. The initial (unperturbed)
velocity of all ions in this case was zero. Solitons perturb the ion velocity in their vicinity. Knowing
the soliton profile, all the parameters of the motion of any ion can be calculated at any moment in

time, which makes the problem under study deterministic (in contrast to the stochastic problem of



warm ions). For the case of cold ions, the Vlasov equations can be replaced by the hydrodynamic
equations and the single-particle approximation. In the calculations [6—10], both averaging over an
ensemble of particles (by numerical modeling) and time averaging for a single particle using the
ergodic hypothesis were used. In the second case, explicit formulas were obtained to describe the
perturbed distribution functions. Nevertheless, the obtained expressions either required the use of
numerical methods or were valid for small-amplitude solitons. The results obtained showed that the
ion distribution function over the components (projections) of velocity (initially equilibrium),
perturbed by compression solitons, has an asymmetric nonequilibrium shape in the vicinity of the
wave. As it turned out, the shape of the perturbed distribution function is similar to the distribution
function of plasma with an ion beam. The integral of the distribution function over the velocity
components turned out to be different from zero, which indicates a one-way transfer of ions by ion-
acoustic solitons. The latter consequence is completely consistent with the results of [16-20]. In the
indicated works, it was shown in various ways that conservative plasma compression solitons carry
out a one-way transfer of charged particles over a finite distance in the direction of their motion.

In the proposed work, using time averaging (based on the ergodic hypothesis), analytical
formulas have been obtained to describe velocity and energy distribution functions perturbed by
solitons, which are valid for arbitrary amplitudes. Graphs of the calculated functions for solitons of
different amplitudes have been constructed. The obtained analytical expressions are compared with
approximate expressions valid for small amplitudes, as well as with the results of numerical modeling.
Only ion distribution functions are considered, while electrons are assumed to be in equilibrium

(Boltzmann).

2. THEORETICAL MODEL

To verify our results, we will use comparison with already known results [6, 8, 9]. Let us
consider a classical one-dimensional hydrodynamic model of a collisionless plasma containing cold

ions 7 ;=0 and hot equilibrium electrons with temperature 7, > 7, . We will assume that the magnetic

field is absent or parallel to the direction of wave propagation. The system of hydrodynamic equations

can be written as
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Here N ;, N .— denote ion and electron concentrations normalized to the unperturbed ion (electron)

concentration 7 o= 1 0i = 7 ¢e ; 0 ;— hydrodynamic ion velocity normalized to the ion-sound velocity
C, =TI, /m;, ,m;— ion mass; ®=ep/T, — normalized electrostatic potential of the wave, e—
absolute electron charge, ¢ — dimensional potential, which can be described by the known

expression E =—0¢/0x for the electric field. The time and spatial coordinates ¢, X are normalized to

o' (where @, =\l4zn,e’ /m, — ion plasma frequency) and to A, , where A, =+/T,/4rze’n, —

Debye radius.

The system of equations (1)-(4) contains soliton solutions that can be found by various
methods. For small amplitudes, it can be described by the KdV equation [21, 22], wherein the profile

of the ion-acoustic soliton is expressed as follows:

)

®(x,t) = D sech’ (X_Mt),

where ®, =3(M —1) is the soliton amplitude, and A =./6/®, is its width, M=V/C ;is the Mach

number, V is the soliton velocity in the stationary coordinate system. In [9], using equation (5), an
explicit formula was obtained for describing the ion velocity distribution function in the vicinity of a

compression ion-acoustic soliton, which has the following form:
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Here T is the averaging time duration. Formula (6) is valid for solitons with small amplitude ® ¢ <0.5
[9].

We are interested in solutions of arbitrary amplitude. For our purposes, we will use Sagdeev's
pseudopotential method, which is suitable for describing the stationary problem. We will assume that
the soliton has passed all stages of evolution and moves at a constant velocity. By introducing a new

variable £ =X — Mt , which corresponds to the transition to a coordinate system moving with the

wave, the system (1)-(4) can be reduced to a single Poisson equation [23]
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where N, (d)) =M /\NM? —2® is the normalized ion concentration for the stationary case [16, 23].

A single integration of (7) with respect to @, taking into account the boundary conditions d @/ dé =0
at ®=0, gives a formula for describing Sagdeev's pseudopotential, U (®) [23]:

U() :%(Z%:]Z’ (8)
U(®)=(1-¢")-M(JM* —20 - M), )

Profiles of ion-acoustic solitons of arbitrary amplitude can be found by numerical integration of
equations (7) or (8) using, for example, the 4th-order Runge-Kutta method. Figure 1 shows the
soliton potential profiles found using the KdV equation and numerically by the Runge-Kutta (RK)

method for different Mach numbers.

Figure 1 demonstrates the classical properties of solitons. Specifically, with increasing soliton
velocity (Mach number), its amplitude ® ¢ increases and its width A decreases. In the considered two-
component model, ion-acoustic solitons can exist in the Mach number range from 1 to 1.6 [6, 8, 23]
with amplitudes up to @ 0=1.6. The KdV equation adequately describes solitons with amplitude @ ¢

<0.5. Having soliton profiles ®( X' ), we can proceed to calculate the perturbed distribution functions.

3. PERTURBED VELOCITY AND KINETIC ENERGY DISTRIBUTION FUNCTIONS FOR
BACKGROUND IONS

To the left and right of a conservative (classical) soliton, the states of the medium (plasma) are
identical. As we move away from the soliton center, the plasma quickly (exponentially) returns to an
unperturbed state. This means that everywhere except for some vicinity of the solitary wave (tens to
hundreds of A, ), the plasma can be considered in equilibrium. It should be noted that for the case of
cold ions, their Maxwellian distribution over velocity components and energy transforms into the

Dirac delta function. Following the reasoning in [8-10], we will analyze the perturbation of

distribution functions in the plasma region with the soliton located at its center. As noted in [9], in



practice it is sufficient for the soliton to be completely within the studied plasma region; however,

theoretical analysis is simpler to perform for the case of central symmetry.

Let us introduce the notation f, (v,) — the ion distribution function with respect to velocity
components, f,, (l)i) — the ion distribution function with respect to kinetic energies. Let us first

consider f, (v,) . The required function can be found using the known formulas

AN
£ (v)= NAD (10)
or
At
£ (v)= Thu (11)

Formula (10) is valid when averaging over an ensemble of ions, formula (11) — when averaging over

time for a single ion (under the condition of plasma ergodicity). Here v, — the velocity of ions along
the x axis, AN — the number of particles with velocities in the range from v, to v, +Av,, N — the
number of ions in the considered region (in the ensemble), Az — the time during which the selected
ion has a velocity in the range from v, to v, +Av, , T — the time over which the averaging is
performed. In practice, T corresponds to the temporal resolution of measuring instruments. Analysis

£, (Ui) using formulas (10) and (11) is in complete agreement, as shown in works [6—10].

In our work, we will focus on finding the exact formula for f, (Ul.) using time averaging for

the motion of a single test ion (using formula (11)), interacting with an ion-acoustic soliton. The posed
problem is schematically shown in Fig. 2.

From Fig. 2, it can be seen that as the soliton moves from left to right, it interacts with an
arbitrarily selected background ion for some time and disturbs its dynamic parameters. The ion is
displaced forward by several Debye radii after the soliton passes, while its initial and final velocities

remain equal to zero [18]. The motion parameters of the selected ion will be used for time averaging.

To apply formula (11), we will need the dependence v, (t) , which we will find from Newton's second

law written for a test ion in the electric field of the soliton m.a, = eE . In normalized form, we have

..__afb(f)
$= o (12)




or taking into accounté = X — Mt ; 0/0X =0/ 0& for a stationary coordinate system

o 00(x.1) (13)
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For the analysis of solitons with arbitrary amplitude, it is necessary to use the numerical solution for

the potential ®( X;¢ ) in (13). The corresponding solutions are presented in the insets to Fig. 2 as

dependencies X(#) and v, (¢) at M =1.05. The problem was solved with the following initial conditions:

X (0)=40, v, (0) =0 . In the case under consideration, the ion reaches maximum velocity at  =39. The

numerical integration parameters correspond to those presented in Fig. 4 in [8]. Although the
numerical solutions are exact, they do not allow obtaining the required analytical expressions. Below

we describe a methodology for obtaining the necessary formulas without using numerical methods.
In the limit A — 0 formula (11) can be written in differential form

2di

1) =24

(14)

The factor "2" corresponds to the case of central symmetry. A detailed derivation of formula
(14) can be found in [8]. Formula (14) comprehensively describes the perturbed distribution function
for solitons of arbitrary amplitude; however, in the general case, it requires the use of numerical

methods, since the dependence v ;( ¢ ) is determined numerically (Fig. 2). For small-amplitude solitons,
the desired function f, (L)l.) was found in [8, 9] using the Sagdeev pseudopotential expansion method
and the KdV equation. Let us proceed to describe the general methodology for obtaining the necessary
formulas without using numerical methods.

Let us follow the logic of reasoning [8, 9]. To solve equation (14), we need the dependence of

the derivative dt/dv, on the parameter v, . According to the law of velocity addition, we have
v/ =v,—M , where v is the ion velocity in the moving coordinate system. The conservative nature

of the field leads to the conservation of mechanical energy

2] 2

or

v =—~M?-20. (16)



In paper [8], formula (16) was obtained by integrating (13). Differentiation of (15) with respect to &

gives
Ui'ﬂ - _d;(). (17)
¢ dg
Now, taking into account (8), as well as di = A dé = 14de we can obtain
dv! d&dv] v dv
dar 1
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Considering (9), we have
dt _ 1 . (18)
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Further, taking into account the law of velocity addition v/ =v, — M , and expressing D from (15),

and VM?* -2® from (16), we get

= (19)

or, considering (14), finally

(20)
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Formula (20) can be rewritten as f, (v,)=2/(T/-2U (®)) , where ®(v,) is determined by equation

(15). Figure 3 shows graphs of the function fu(ul.) , obtained using three methods: using the

approximate formula (6) (first obtained in [9]); using the exact formula (20); and by particle ensemble
modeling using the methodology from [6, 8]. The graph of the function f, (Ui) , obtained from
expression (20), valid for arbitrary amplitudes, is filled in since it is considered the reference. The

approximate dependencies are represented by dashed curves.

As can be seen from Fig. 3, the results obtained using formula (20) completely coincide with

the simulation results [8]. The approximate formula (6) remains valid for small amplitudes. The



parameters of the function f, (v,) are the Mach number M and the averaging time 7 . The domain of

definition f; (ul.) is in the range 0 <v, <M . Indeed, in papers [6, 16, 18], it is shown that in the

electric field of a classical ion-acoustic compression soliton, ions can only move with a positive

velocity v, > 0. On the other hand, the upper boundary v, <M is determined by the subcriticality of
the considered solitons. At v, > M , wave breaking occurs and multi-stream motion forms.

Using (20), it is possible to find the average value of the ionic current density induced by
solitons, J, . In normalized form, we have J, = j;wuifu (v,)dv, . For M=1.05, T=71 we get J, =0.26
, which is in complete agreement with the results of [6], where the value J, was calculated for a group

of identical solitons with a period of 7'=71 at M =1.05. There is also agreement with the results of

[16], where the value J, was obtained using hydrodynamic equations. In turn, knowing J, it is easy
to calculate the total electric ionic charge transferred by a soliton through a unit area, O, =J.T . Itis
straightforward to verify that the obtained dependence Q,(M)~Q,(®,) is consistent with the

dependence AX (®,)=0,(®,) , calculated in [18] by different methods (here AX is the distance of

ion transfer by a soliton).

Let's find an expression for the distribution function by kinetic energies. Knowing the function

/£, (v,) we can find the function f,, (W) , using the known relationship [7, 10]

£ (v)dv, = f,(W,)dw,. (1)

Considering that W, =0’ /2 we have

&

AUAE

(22)
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The domain of the function f,, (VK) is determined by the inequality 0< W ;<M ?2/2 .

Figure 4 shows the graphs of f, ( ) for different Mach numbers. For comparison, the graphs

present the results from [10], obtained through ensemble modeling and using an approximate formula

derived from the KdV equation.



From Fig. 4, it can be seen that the results obtained using formula (22) are in complete
agreement with the simulation results from [10]. The approximate formula (14) from [10] remains
valid for small amplitudes.

As can be seen from Fig. 3 and 4, the distribution functions of background ions become highly
non-equilibrium in the vicinity of solitons. They correspond to the transport of ions by the soliton
(excitation of soliton currents) and have a "beam-like" form. The presence of a charged particle flow
in the vicinity of a soliton can cause the development of streaming instabilities [24]. In particular,
electron drift with velocity v > C s can cause drift ion-acoustic instability. With increasing drift
velocity, Buneman instability can develop. However, in our model, electrons were assumed to be in
equilibrium, and their flows were set to zero. The soliton currents considered by us can cause
streaming dust-acoustic instabilities [25]. This situation is possible in dusty plasma in the presence of
ion-acoustic solitons [13]. Ion flows can also affect the charge of dust particles in dusty plasma, which
is one of the causes of instabilities [26]. Detailed analysis of such problems is a topic for future

work.

CONCLUSION

Based on the Sagdeev pseudopotential method, an analytical expression is obtained describing
the distribution functions of background ions perturbed by an ion-acoustic soliton in terms of velocity
components ', (v ;) and kinetic energies f w( W ;). It was previously shown [5-10] that ion-acoustic
solitons strongly perturb the initially equilibrium distribution function of ions. In the region occupied
by solitons, such a function has a "beam-like" form [6-10]. The obtained results are valid only for cold
plasma fractions. For the case of warm ions, they can only be used as estimates. It is expected that
accounting for the thermal motion of ions will lead to broadening of the maxima of the distribution
functions. The analytical formulas (20), (22) are simple to apply, they can be used to interpret
experimental data, as well as to develop new methods of plasma diagnostics. It is worth noting that
the approach we used is quite universal and can be used to describe the properties of electron- and

dust-acoustic solitons.
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FIGURE CAPTIONS

Puc. 1.Soliton potential profiles at different Mach numbers: "RK" - numerical simulation using the

Runge-Kutta method; "KdV" - analysis using the Korteweg-de Vries equation according to formula
(5).
Puc. 2.Scheme of interaction between a test ion and an ion-acoustic soliton; the insets show the

dependencies of X (¢ ) and v ; ( ¢ ) for the test ion. Circles represent the initial and final positions of
the test ion.
Puc. 3.Perturbed distribution functions f, (v,) at T=38 and at different Mach numbers, calculated
using various methods: using approximate formula (6) - dashed curve; using exact formula (20) - filled
solid curve; using particle ensemble simulation according to the methodology [6, 8] - triangles.

Puc. 4.Perturbed distribution functions f,, (W,)at T =38 and at different Mach numbers, calculated

using various methods: using approximate formula (14) from [10] - dashed curve; using exact
formula (22) - filled solid curve; using particle ensemble simulation according to the methodology

[10] - triangles.
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