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1. ВВЕДЕНИЕ

Наиболее полное описание эволюции ан­
самбля электронов в электрическом поле воз­
можно в рамках уравнения Больцмана, которое 
в наиболее общем случае является нестацио­
нарным интегро-дифференциальным уравнением 
для функции распределения электронов (ФРЭ) 
в  шестимерном фазовом пространстве (r, p). 
В данной работе рассматривается случай слабо­
ионизованного газа, когда столкновениями 
электронов друг с  другом и  с  ионами можно 
пренебречь. Учитываются только упругие и неуп­
ругие столкновения электронов с нейтральными 
атомами или молекулами газа. В этом случае 
эволюция ФРЭ f(r, p, t) подчиняется кинетичес­
кому уравнению

	
∂
∂

+ × ∇ + × ∇ = + +f
t

f fev Fr p St St Stel ex ion . 	 (1)

Здесь Fe = –qeE – сила, действующая на 
электрон, где qe – элементарный заряд, E – на­
пряженность электрического поля; v – скорость 

электрона; St , St Stel ex ion,  – компоненты интеграла 
столкновений электронов, отвечающие за 
изменение ФРЭ в  упругих столкновениях, 
в процессах возбуждения и ионизации атомов или 
молекул соответственно.

В статье [1] в предположении, что ФРЭ является 
симметричной относительно вектора e = –E/E, 
выполнен вывод дифференциального разложения 
интеграла упругих столкновений Stel по произ­
водным косинуса μ полярного угла θ между 
вектором импульса p и единичным вектором e. 
Отметим, что предположение о симметричности 
ФРЭ относительно направления e означает, что 
плазмы является локально однородной в попер­
ченном относительно данного вектора направ­
лении. В данной работе получено полное диффе­
ренциальное разложение интеграла упругих 
столкновений, в предположении, что кинетиче­
ская энергия электронов значительно превышает 
энергию теплового движения атомов (молекул) 
и последние можно считать неподвижными.
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2. ИНТЕГРАЛ УПРУГИХ СТОЛКНОВЕНИЙ 
ЭЛЕКТРОНОВ С ТЯЖЕЛЫМИ 

НЕЙТРАЛЬНЫМИ ЧАСТИЦАМИ 

На рис. 1 показана геометрия рассеяния элект­
рона, которая тождественна использованной 
в работах [2, 3]. Система координат задается ор­
тами: i = [p × [e ×p]] / (p2 sinθ), j = [p × e ] / (p cosθ), 
k = p / p, где p − импульс электрона после рас­
сеяния. В  этой системе координат k  – это 
полярная ось, полярный угол совпадает с углом 
рассеяния ψ π∈[ , ]0 , а  угол α π∈[ , ]0 2  между 
вектором j и направлением проекции импульса 
pʹ до рассеяния на плоскость ij является 
азимутальным углом. Связь между векторами pʹ 
и p определяется уравнением [3]
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Далее будем предполагать, что энергия элект­
рона не меняется в процессе упругого рассеяния, 
поскольку масса электронов много меньше массы 
атомов (молекул). Заметим, однако, что соответ­
ствующий член, описывающий потерю энергии 
электроном в упругих столкновениях, может быть 
легко получен, по аналогии с тем как это было 
сделано в [2, 3]. 

Вводя малый параметр δ ξ= −1 , где ξ ψ= cos , 
распишем уравнение (2) по компонентам: 
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	(3)

Здесь использовано стандартное обозначение 
p p px y⊥ = +2 2 .

В выбранной системе координат интеграл 
упругих столкновений электронов с неподвиными 
частицами выражается следующим образом [2, 3]: 

	 Stel = −[ ]∫N f t f t p delυ σ ψ ω
ω

( , , ) ( , , ) ( , ) ',
'

r p' r p 	(4)

где σ ψel p( , ) – дифференциальное сечение упру­
гого рассеяния, d d dω ψ ψ α' sin=  – элемент телес­
ного угла в пространстве импульсов, N – кон­
центрация нейтральных частиц, υ – модуль 
скорости электрона. Далее в тексте для сокраще­
ния записи мы будем опускать зависимость 
f t( , , )r p'  от радиус-вектора r. 

3. ДИФФЕРЕНЦИАЛЬНОЕ РАЗЛОЖЕНИЕ 
ИНТЕГРАЛА УПРУГИХ СТОЛКНОВЕНИЙ 
В СЛУЧАЕ СИММЕТРИЧНОЙ ФУНКЦИИ 

РАСПРЕДЕЛЕНИЯ

Предполагая, что ФРЭ симметрична относи­
тельно некоторого направления (направление e



 
на рис. 1), в  [1] получено следующее диффе­
ренциальное разложение Stel:
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	(5)

Введем обозначение для дифференциаль­
ных  операторов, входящих в  формулу (5) 
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( )1 2 . Покажем теперь, что дан­

ные операторы удовлетворяют рекуррентному 
соотношению, которое будет важно в дальнейшем:
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Рис. 1. Геометрия рассеяния электрона.
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Для доказательства рассмотрим вспомогатель­

ную функцию g
fl
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(7)

Из (6) очевидным образом следует:
D D D D D l ll
    = + ×( ) + ×( ) ⋅ ⋅ ⋅ + −( )1 1 1 11 2 2 3 1( ) . 	 (8)

Раскрывая скобки, получаем:
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при этом коэффициенты вычисляются по теореме 
Виета
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Отметим также, что данные числа удовлетво­
ряют системе уравнений
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(11)

Данная система полезна при выводе уравнений 
моментов ФРЭ из кинетического уравнения (1), 
о чем будет сказано в разд. 5.

Для наглядности выпишем несколько первых 
операторов (9):
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Замечая, что оператор D1
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впадает с соответствующим членом в операторе 
Лапласа, записанном в сферической системе ко­
ординат, 
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можно предположить, что в случае учета зависи­
мости ФРЭ от азимутального угла φ, члены диф­
ференциального разложение интеграла упру­
гих  столкновений будут иметь вид тождест­
венный (9), но только с оператором
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Далее мы докажем данное предположение.

4. ВЫВОД ДИФФЕРЕНЦИАЛЬНОГО 
РАЗЛОЖЕНИЯ ИНТЕГРАЛА УПРУГИХ 
СТОЛКНОВЕНИЙ В ОБЩЕМ СЛУЧАЕ

Разложим подынтегральную функцию в выра­
жении (4) ряд по малому параметру δ:
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Нашей целью является вычислить все члены 
данного разложения, выполнив интегрирование 
по переменным α и ξ. Для того чтобы вычислить 
производные по δ в выражении (13), воспользу­
емся формулой Фаа Ди Бруно для n-й производ­
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ной сложной функции векторного аргумента 
f u x x z x( ( ), ( ),..., ( ))υ  [4]: 
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где величины
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представляют собой называемые дифферен­
циальные переменные, которые в формуле (14) 
рассматриваются как независимые переменные, 
перестановочные друг с другом и с операторами 
дифференцирования ∂u, ∂υ, ..., ∂z. Суммирование 
в формуле (14) ведется по целым неотрицательным 
числам k1, k2, ..., kn , которые являются решением 
диофантового уравнения k k nk nn1 22+ + + =... .

В нашем случае операторы B j
  имеют сле­

дующий вид:
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Вычисляем по формулам (3) производные 
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Тогда для операторов B j
 получаем следующие 

выражения:
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где 	
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С учетом того, что все операторы B j


2 0=  при 
j > 1, формула (14) в нашем случае принимает вид:
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Далее необходимо проинтегрировать выражение 
(19) по переменной α. Эта задача сводиться 
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к вычислению интеграла a b d
K

 sin cosα α α
π

+( )∫0

2
. 

Данный интеграл равен нулю, если K нечетное 
число, но поскольку 
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то четность числа K совпадает с четностью числа n. 

Из этого следует, что 
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Далее рассмотрим случай с четными значе­
ниями n = 2l и соответственно K. Для удобства 
записи введем обозначения:
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	 (20)

Вычисляем интеграл: 
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(21)

С учетом данного выражения и новых обозна­
чений интеграл по переменной α от выражения (19) 
при четных значениях n имеет следующий вид: 
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где операторы
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Теперь вычислим выражение (22) при l = 1. 
В этом случае сумма в выражении (22) сводится 
только к двум членам со значениями m1 = 1, m2 = 0  
(L = 1/2) и m1 = 0, m2 = 1 (L = 1):
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Далее, подставляя данное соотношение в выра­
жение (13) и интегрируя по переменной ξ, полу­
чаем первый член дифференциального разложе­
ния интеграла упругих столкновений:
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	(25)

Данное выражение хорошо известно [5], 
и имеем прямой аналог в классическом уравнении 
Фоккера–Планка [6]. Отметим также, что диф­
ференциальный оператор в формуле (24) может 
быть записан в дивергентном виде:
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Соответственно в сферической системе коор­

динат D1
2
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На следующем шаге вновь вернемся к формуле 
и вычислим числовой коэффициент при старших 
производных. Очевидно, что для этого нужно 
взять значения m l m m ml1 2 3 1 0= = = = =+, ... . Со­
ответственно числовой коэффициент при члене 

( )a b l
 

2 2
+  будет равен 

1

2 2l l( !)
; вынесем этот коэф­

фициент из-под знака суммы в выражении (22):
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Далее следует самый важный шаг. Мы хотим 
доказать рекуррентное соотношение, аналогич­
ное (6):
	 D D l l D ll l

  = + −



 >−1 11 1( ) , , 	 (28)
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только теперь оператор D1 определятся форму­
лой (26). 

Прежде всего заметим, что в выражение (27) 
для оператора Dl

  входят только дифференци­
альные операторы вида
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Напомним, что величины pi и ∂ pi
здесь рас­

сматриваются как независимые переменные. 
Далее, опуская длинные выкладки, выпишем 
сразу результат действия оператора
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на выражение (29):

	

D p

p

p



1
2

2 1 2 1

2

1

2

( ) ( )

( ) ( )( ) ( )

(

∆

∆

p p

p p

p

p

β γ

β γ βγ γ

γ

× ∇{ } =

= − × ∇ +

+

+ − +

 ββ γ β

β γ β

βγ γ

+ − +

+ +

× ∇

+ × ∇ −

− +

1 1 1

2 1 1

21

) ( )

( ) ( )

( )

( )

( ) (

p

p

p

p p

p p

∆

∆ 

 

p

p ×× ∇ −

− + × ∇ −

− × ∇

+

+

p p

p p

p p

p

p

)

( ) ( )

( ) .

( )

( )

( )

γ β

β γ β

β γ β

γ

∆

∆

∆

 

 

2 1 2 1

2 2

p

p

	

(30)

Введем обозначения:
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Тогда, если ввести оператор P D l l = + −1 1( )  
и использовать соотношение (30), то
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Выражение в формуле (27) для оператора Dl
  

можно формально рассмотреть как многочлен по 
переменным λ и τ. Необходимо теперь показать, 
что если подействовать на этот многочлен опера­
тором P, действие которого на члены многочлена 
определяется по правилу (32), то мы получим мно­
гочлен соответствующий оператору Dl

 +1, т. е.

тогда, соответственно будет справедливо рекур­
рентное соотношение (28).

Для этого вновь рассмотрим здесь случай, когда 
ФРЭ зависит только от угловой переменной µ. 
Мы можем записать выражение для интеграла 
столкновений, аналогичное (13):
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где µ δ µ δ µ δ δ α'( ) ( ) cos= − + − −1 1 22 2 2   [1]. Да­
лее мы вновь воспользуемся формулой Фаа Ди 
Бруно  (14), только теперь операторы 
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В итоге получаем выражение, аналогичное (19):

После интегрирования данного выражения по 
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венному полученному ранее (стоящему в правой 
части равенства (33)). 

Рассмотрим теперь действие оператора 

P D l l = + −1 1( )  на члены τ λ µ
µ

γ β γ
γ β

γ β= ∂
∂

+

+

2

2 , только 

теперь оператор 

D1
2

2

2
2

2

2
1 2= ∂

∂
− ∂

∂








= ∂
∂

− ∂
∂

− ∂
∂µ

µ
µ µ

µ
µ

µ
µ

( ) :

	
P τ λ

µ
µ

µ
µ

µ

µ
µ

γ β

γ
γ β

γ β

{ } = ∂
∂

− ∂
∂

− ∂
∂













×

× ∂
∂










+

+

2

2
2

2

2

2

2

2




+ − =( )l l1 λ τβ γ

	 (38)

− ∂
∂

+ − ∂
∂

=

= −

+
+ +

+ +

+

+

− +

 2 1

1

1
1 2

1 2

2

2

2 1

µ
µ

µ
µ

γ γ τ λ

γ
γ β

γ β
γ

γ β

γ β

γ β

( )

( )

l l

++ + −

− + − + −

− + −

− + +

+

+

2

1 2 1

1

1 1 1

1

2

γτ λ τ λ

γ γ τ λ γ τ λ

τ λ

γ β γ β

γ β γ β

γ β

( ) ( )

( )l llτ λγ β.

Как видим, данное выражение относительно 
переменных λ и τ полностью совпадает с выра­
жением (32). Таким образом, можно считать 
доказанным равенство (33), справедливость ко­
торого в этом случае следует из истинности ут­
верждения (6), доказанного ранее. В свою очередь, 
из справедливости равенства (33) следует и истин­
ность рекуррентного соотношения (28).

В итоге после интегрирования членов ряда (13) 
по переменной ξ (напомним, что δ ξ2 1= − ) 
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получаем следующее дифференциальное разло­
жение Stel:
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(39)

5. ПРИЛОЖЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО 
РАЗЛОЖЕНИЯ К ВЫВОДУ СИСТЕМЫ 

МНОГОГРУППОВЫХ УРАВНЕНИЙ  
ДЛЯ МОМЕНТОВ ФРЭ

Покажем, как полученное разложение (39) 
может быть использовано для получения системы 
многогрупповых уравнений для моментов ФРЭ. 
Обычно при выводе из уравнения (1) уравнений 
для моментов ФРЭ используют разложение ФРЭ 
в ряд по ортогональным функциям, например, 
полиномам Эрмита–Чебышева [7], или функциям 
Барнетта [8]. Недостатком данного подхода 
является его ограниченность областью низких 
энергий, где угловое распределение электронов 
обладает слабой анизотропией. В  случае же 
релятивистских электронов данное приближение 
не выполняется, поскольку угловое распределение 
электронов сильно анизотропно [9]. Используя 
полученное здесь дифференциальное разложе­
ние (39), можно получить систему уравнений для 
моментов ФРЭ как в области низких, так и высо­
ких энергий.

Для того чтобы получить систему много­
групповых уравнений интересуемый интервал 
значений импульса p pmin max,  разбивается на K 
частей ∆p p pk k k k+ − + −= −1 2 1 2 1 2 1 2/ , / / / ,  k  =  1, ..., K 
[11,  12]. Величина нулевого (концентрация 
электронов) и  первого (плотность потока) 
момента ФРЭ в  k-й группе определяется 
следующим образом:
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(40)

Для получения уравнения для изменения 
величины n tk ( , )r  необходимо проинтегрировать 
кинетическое уравнение (1) по шаровому слою 
в  пространстве импульсов p p pk k∈ − +[ , ]/ /1 2 1 2 , 
µ ∈ −[ , ]1 1  и ϕ π∈[ , ]0 2 . Интегрируя левую часть 
кинетического уравнения (1), получаем выражение
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Для получения уравнения для изменения 
величины j rk t+1 2/ ( , ) необходимо умножить урав­
нение (1) на вектор v и проинтегрировать по ша­
ровому слою p p pk k∈ +[ , ]1 , µ ∈ −[ , ]1 1  и ϕ π∈[ , ]0 2 , 
в итоге получаем выражение
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(42)

где тензор второго ранга Πk – это тензор плот­
ности потока импульса.

Далее необходимо проинтегрировать члены 
Stel, Stex, Stion, стоящие в правой части уравне­
ния (1). В [10], где был выполнен вывод системы 
многогрупповых уравнений для нулевого и пер­
вого момента функции распределения электронов 
низких энергий, при интегрировании правой 
части уравнения (1) использовалось приближение 
Лоренца для ФРЭ. Используя полученное здесь 
дифференциальное разложение (39) можно вы­
полнить интегрирование, не используя этого 
упрощения.

Рассмотрим это на примере интеграла упругих 
столкновений Stel. В случае нулевого момента, 
интегрируя выражение (39) по шаровому слою 
естественно, поскольку число электронов не ме­
няется в процессе упругого рассеяния, получаем 
ноль ввиду равенств

	 D f p t d dl
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так как 
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В случае уравнения первого момента, ис­
пользуя равенство
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получаем, что ненулевой вклад даст только первый 
член разложения (39), а все остальные члены дадут 
нули ввиду первого уравнения системы (11).

Аналогично при выводе уравнения для второго 
момента Πk, используя равенство
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можно показать, что не нулевой вклад при интег­
рировании величины Stel дадут только первые два 
члена ряда (39), остальные дадут нули в силу 
второго равенства системы (11). В общем случае 
при получении уравнения для n-го момента от­
личный от нуля вклад дадут только первые n 
членов ряда (39).

Отметим, без рассмотрения, что похожим 
образом используя некоторые упрощения (пред­
полагается, что электрон не меняет направления 
своего движения в процессе возбуждения атомов, 
и процесс ионизации рассматривается как рас­
сеяние электрона на свободном электроне) 
[11, 14], можно выполнить и интегрирование ве­
личин Stex, Stion. В итоге можно получить следую­
щую систему многогрупповых уравнений для 
нулевого и первого момента ФРЭ
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где ν υσtr tr= N  – эффективная частота упругих 
столкновений. Величины ν υ εex ex= ∑N q m

m
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m m
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дения m-го уровня атома (молекулы) с энергией 
возбуждения εex

( )m , km  – это номер отрезка 
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и lk – это номер отрезка [ , ]/ /p pk k− +1 2 1 2  в котором 

лежит значение p k
m

m( min )( )ε ε+ { }ion ; µ0 – это косинус 
угла рассеяние электрона в процессе иониза­
ции [3], c – скорость света.

Отметим, что при выводе системы уравне­
ний (46) не использовались никакие предполо­
жения относительно вида ФРЭ. В этом смысле 
система (46) является точной. Однако система не 
замкнута, поскольку в нее входит величина Πk для 
определения которой необходимо дополнительное 
уравнение. Если использовать приближение 
Лоренца (слабая анизотропия ФРЭ), то в этом 
случае тензор потока импульса принимает вид 

π δ
υ

k ij ij
k kn

, =
2

3
, и, подставляя данное выражение 

в (46), можно получить замкнутую систему урав­
нений, которая будет идентична, полученной 
в [10], за исключением членов, отвечающих за 
потери энергии электроном в упругих столкно­
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вениях, но которыми можно пренебречь в доста­
точно сильных электрических полях [10, 13].

В статье [14], используя разложение (5), была 
получена система одномерных многогрупповых 
уравнений для двух первых моментов функции 
распределения убегающих электронов в области 
релятивистских энергий. Но поскольку в процессе 
вывода предполагалось, что ФРЭ не зависит от 
азимутального угла φ в пространстве импульсов, 
то полученная система уравнений не описывала 
диффузию электронов в направлении, ортого­
нальном направлению дрейфа электронов. 
Используя полученное здесь разложение (39), 
можно получить систему многогрупповых урав­
нений, описывающую транспорт электронов 
высоких энергий с учетом поперечной диффузии 
электронов.

6. ЗАКЛЮЧЕНИЕ

Получено дифференциальное представление 
интеграла упругих столкновений электронов 
в слабоионизованной плазме в предположении, 
что кинетическая энергия электронов намного 
превышает энергию нейтральных частиц (атомов 
или молекул). При этом первый член разложения 
совпадает с классическим оператором, фигури­
рующем в уравнении Фоккера–Планка. Данное 
дифференциальное разложение может быть 
использовано для вывода уравнений для моментов 
ФРЭ во всем диапазоне энергий электрона, в том 
числе и в области релятивистских энергий.
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COMPLETE DIFFERENTIAL EXPANSION OF THE INTEGRAL OF ELASTIC 
COLLISIONS OF ELECTRONS WITH HEAVY NEUTRAL PARTICLES

E. I. Bochkova, *
aRussian Federal Nuclear Center—All-Russian Scientific Research Institute of Experimental Physics,  

Sarov, Nizhny Novgorod oblast, 60719, Russia
*e-mail: e_i_bochkov@mail.ru

The derivation of the complete differential expansion of the integral of elastic collisions of electrons with 
heavy neutral particles is performed for the case when the electron distribution function is not symmetric 
with respect to some direction. The derivation is made under the assumption that the kinetic energy of 
electrons greatly exceeds the energy of thermal motion of atoms and molecules. It is shown how the result­
ing expansion can be used to derive equations for the moments of the electron distribution function. 

Keywords: electron distribution function, kinetic equation, collision integral, differential expansion
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