EEG pattern decoding of rhythmic individual finger imaginary movements of one hand


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The results of four-class classification of the motor imagery EEG patterns corresponding to the right hand finger movements (little finger, thumb, index and middle fingers) of eight healthy subjects are presented in this study. The motor imagery of individual right-hand finger movements was executed by the subjects in a prescribed rhythm and the trials contained no external stimuli. Classification was performed by means of a specially developed two-level committee of classifiers on the basis of support vector machine and artificial neural networks at the first level and by generalizing an artificial neural network at the second level. The area under the EEG signal curve and the curve length calculated in a sliding time window for sites F3, C3, and Cz of the International 10?20 System were selected as the key features of signals from the sensorimotor and adjoining frontal cortical areas contralateral to the movements. The average accuracy of four-class singletrial classification for all subjects was 50 ± 7 [SD] (maximum, 58%) for the pair of sites F3C3 and 46 ± 11% [SD] (maximum 62%) for the pair of sites C3Cz with a theoretical guessing level 25%.

Об авторах

L. Stankevich

St. Petersburg State Polytechnical University

Автор, ответственный за переписку.
Email: stankevich_lev@inbox.ru
Россия, St. Petersburg, 195251

K. Sonkin

St. Petersburg State Polytechnical University

Email: stankevich_lev@inbox.ru
Россия, St. Petersburg, 195251

N. Shemyakina

Sechenov Institute of Evolutionary Physiology and Biochemistry

Email: stankevich_lev@inbox.ru
Россия, St. Petersburg, 194223

Zh. Nagornova

Sechenov Institute of Evolutionary Physiology and Biochemistry

Email: stankevich_lev@inbox.ru
Россия, St. Petersburg, 194223

J. Khomenko

Bechtereva Institute of Human Brain

Email: stankevich_lev@inbox.ru
Россия, St. Petersburg, 197376

D. Perets

St. Petersburg State Polytechnical University; Sechenov Institute of Evolutionary Physiology and Biochemistry

Email: stankevich_lev@inbox.ru
Россия, St. Petersburg, 195251; St. Petersburg, 194223

A. Koval

St. Petersburg State Polytechnical University

Email: stankevich_lev@inbox.ru
Россия, St. Petersburg, 195251

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2016

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».