The Efficiency of the Brain-Computer Interfaces Based on Motor Imagery with Tactile and Visual Feedback


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this study we compared tactile and visual feedbacks for the motor imagery-based brain–computer interface (BCI) in five healthy subjects. A vertical green bar from the center of the fixing cross to the edge of the screen was used as visual feedback. Vibration motors that were placed on the forearms of the right and the left hands and on the back of the subject’s neck were used as tactile feedback. A vibration signal was used to confirm the correct classification of the EEG patterns of the motor imagery of right and left hand movements and the rest task. The accuracy of recognition in the classification of the three states (right hand movement, left hand movement, and rest) in the BCI without feedback exceeded the random level (33% for the three states) for all the subjects and was rather high (67.8% ± 13.4% (mean ± standard deviation)). Including the visual and tactile feedback in the BCI did not significantly change the mean accuracy of recognition of mental states for all the subjects (70.5% ± 14.8% for the visual feedback and 65.9% ± 12.4% for the tactile feedback). The analysis of the dynamics of the movement imagery skill in BCI users with the tactile and visual feedback showed no significant differences between these types of feedback. Thus, it has been found that the tactile feedback can be used in the motor imagery-based BCI instead of the commonly used visual feedback, which greatly expands the possibilities of the practical application of the BCI.

Об авторах

M. Lukoyanov

Lobachevskii Nizhny Novgorod State University; Nizhny Novgorod State Medical Academy

Email: gordleeva@neuro.nnov.ru
Россия, Nizhny Novgorod; Nizhny Novgorod

S. Gordleeva

Lobachevskii Nizhny Novgorod State University

Автор, ответственный за переписку.
Email: gordleeva@neuro.nnov.ru
Россия, Nizhny Novgorod

A. Pimashkin

Lobachevskii Nizhny Novgorod State University

Email: gordleeva@neuro.nnov.ru
Россия, Nizhny Novgorod

N. Grigor’ev

Lobachevskii Nizhny Novgorod State University

Email: gordleeva@neuro.nnov.ru
Россия, Nizhny Novgorod

A. Savosenkov

Lobachevskii Nizhny Novgorod State University

Email: gordleeva@neuro.nnov.ru
Россия, Nizhny Novgorod

A. Motailo

Lobachevskii Nizhny Novgorod State University

Email: gordleeva@neuro.nnov.ru
Россия, Nizhny Novgorod

V. Kazantsev

Lobachevskii Nizhny Novgorod State University

Email: gordleeva@neuro.nnov.ru
Россия, Nizhny Novgorod

A. Kaplan

Lobachevskii Nizhny Novgorod State University; Moscow State University

Email: gordleeva@neuro.nnov.ru
Россия, Nizhny Novgorod; Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).