Employing AVX vectorization to improve the performance of random number generators
- 作者: Barash L.Y.1,2, Guskova M.S.2,3, Shchur L.N.1,2,3
-
隶属关系:
- Landau Institute for Theoretical Physics
- Science Center in Chernogolovka
- National Research University Higher School of Economics
- 期: 卷 43, 编号 3 (2017)
- 页面: 145-160
- 栏目: Article
- URL: https://journals.rcsi.science/0361-7688/article/view/176503
- DOI: https://doi.org/10.1134/S0361768817030033
- ID: 176503
如何引用文章
详细
By the example of the RNGAVXLIB random number generator library, this paper considers some approaches to employing AVX vectorization for calculation speedup. The RNGAVXLIB library contains AVX implementations of modern generators and the routines allowing one to initialize up to 1019 independent random number streams. The AVX implementations yield exactly the same pseudorandom sequences as the original algorithms do, while being up to 40 times faster than the ANSI C implementations.
作者简介
L. Barash
Landau Institute for Theoretical Physics; Science Center in Chernogolovka
编辑信件的主要联系方式.
Email: barash@itp.ac.ru
俄罗斯联邦, Chernogolovka, 142432; Chernogolovka, 142432
M. Guskova
Science Center in Chernogolovka; National Research University Higher School of Economics
Email: barash@itp.ac.ru
俄罗斯联邦, Chernogolovka, 142432; Moscow, 101000
L. Shchur
Landau Institute for Theoretical Physics; Science Center in Chernogolovka; National Research University Higher School of Economics
Email: barash@itp.ac.ru
俄罗斯联邦, Chernogolovka, 142432; Chernogolovka, 142432; Moscow, 101000
补充文件
