Employing AVX vectorization to improve the performance of random number generators


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

By the example of the RNGAVXLIB random number generator library, this paper considers some approaches to employing AVX vectorization for calculation speedup. The RNGAVXLIB library contains AVX implementations of modern generators and the routines allowing one to initialize up to 1019 independent random number streams. The AVX implementations yield exactly the same pseudorandom sequences as the original algorithms do, while being up to 40 times faster than the ANSI C implementations.

作者简介

L. Barash

Landau Institute for Theoretical Physics; Science Center in Chernogolovka

编辑信件的主要联系方式.
Email: barash@itp.ac.ru
俄罗斯联邦, Chernogolovka, 142432; Chernogolovka, 142432

M. Guskova

Science Center in Chernogolovka; National Research University Higher School of Economics

Email: barash@itp.ac.ru
俄罗斯联邦, Chernogolovka, 142432; Moscow, 101000

L. Shchur

Landau Institute for Theoretical Physics; Science Center in Chernogolovka; National Research University Higher School of Economics

Email: barash@itp.ac.ru
俄罗斯联邦, Chernogolovka, 142432; Chernogolovka, 142432; Moscow, 101000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017