Evolutionary Algorithms for Optimizing Cost and QoS on Cloud-based Content Distribution Networks


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Content Distribution Networks (CDN) are key for providing worldwide services and content to end-users. In this work, we propose three multiobjective evolutionary algorithms for solving the problem of designing and optimizing cloud-based CDNs. We consider the objectives of minimizing the total cost of the infrastructure (including virtual machines, network, and storage) and the maximization of the quality-of-service provided to end-users. The proposed model considers a multi-tenant approach where a single cloud-based CDN is able to host multiple content providers using a resource sharing strategy. The proposed evolutionary algorithms address the offline problem of provisioning infrastructure resources while a greedy heuristic method is proposed for addressing the online problem of routing contents. The experimental evaluation of the proposed methods is performed over a set of realistic problem instances. Results indicate that the proposed approach is effective for designing and optimizing cloud-based CDNs reducing total costs by up to 10.3% while maintaining an adequate quality of service.

Об авторах

S. Iturriaga

Universidad de la República

Автор, ответственный за переписку.
Email: siturria@fing.edu.uy
Уругвай, Julio Herrera y Reissig 565, Montevideo, 11300

S. Nesmachnow

Universidad de la República

Автор, ответственный за переписку.
Email: sergion@fing.edu.uy
Уругвай, Julio Herrera y Reissig 565, Montevideo, 11300

G. Goñi

Universidad de la República

Автор, ответственный за переписку.
Email: gerardo.goni@fing.edu.uy
Уругвай, Julio Herrera y Reissig 565, Montevideo, 11300

B. Dorronsoro

Universidad de Cádiz

Автор, ответственный за переписку.
Email: bernabe.dorronsoro@uca.es
Испания, C/Ancha 16, Cádiz, 11001

A. Tchernykh

Centro de Investigación Científica y Educación Superior de Ensenada Carretera

Автор, ответственный за переписку.
Email: chernykh@cicese.mx
Мексика, Ensenada-Tijuana no. 3918 Zona Playitas, Ensenada, Baja California, 22860

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».