Modeling a pneumohydraulic sprayer for irrigation and fertigation


如何引用文章

全文:

详细

The aim of the research was to increase the efficiency of use and the ability to control liquid spraying when creating artificial rain in medium to reduce energy consumption, to increase the reliability of the device for irrigation of crops, which combines additional processing of plants with various technologies for growing them by creating the necessary conditions for the formation of a water-air stream due to substantiation of the structural and geometric design parameters of sprayer. The most common irrigation method called the sprinkling is analyzed. The need to increase the economic efficiency of spray nozzle designs to improve the quality of artificial rain is shown. A fundamentally new scheme of the spraying device for innovative irrigation technologies and a mathematical model for the theoretical and technological substantiation of its main parameters: the diameters of the nozzles of the water and air nozzles, the diameter and length of the mixing chamber, as well as the necessary water and air pressures, are developed. The rationale for the design decisions of the pneumohydraulic sprayer is given. The destruction of the continuity of the liquid in the atomizer is considered taking into account the parameter of its strength during the interaction of heterogeneous phases of water and air. In this case, the air supply for spraying the liquid can be carried out either by force or by ejection. The algorithm for calculating the parameters of the spraying device is executed and works in a spreadsheet (EXCEL or WPS) using the mathematical expressions justified for the main structural and technological parameters of the device. The initial data are the pressure of water р1 and air р2 at the inlet of the sprayer, the required water flow rate G1 and the ejection coefficient u. The calculations take into account the flow coefficients of water and air µ, the gas constant R and the air temperature Т. The calculation results are displayed in EXCEL tables. Based on the results of mathematical modeling of the operation of the pneumohydraulic sprayer there were obtained the graphical dependencies to optimize its technological parameters and design solutions for the development, manufacture of a pneumohydraulic sprayer prototype and its experimental testing to obtain droplets of artificial rain of various sizes during irrigation and fertigation of crops, which will contribute to a successful solution of discussed agroindustrial complex problems.

作者简介

V. Gorobej

Federal State Budgetary Institution of Science «All-Russian National Scientific Research Institute of Vinegraphy and Wine-making “Magarach”»

Email: magarach@rambler.ru
DSc in Engineering Yalta, Russia

V. Moskalevich

Academy of Bioresources and Nature Management of V.I. Vernadsky Crimean Federal University

Email: kaf-meh@rambler.ru
PhD in Engineering Agrarnoe, Russia

参考

  1. Калашников А.А., Жарков В.А., Джумабеков А.А. и др. Дождевальный аппарат: инновационный патент Республики Казахстан № 26143 // Промышленная собственность. Официальный бюллетень. Изобретения. Полезные модели. 2012. № 19.
  2. Губская У.А. Инновационные технологии устройств создания искусственного дождя // Совместные воды - совместные действия: мат. научно-практического семинара. Симферополь: Крымский научный центр НАНГ Украины и МОН Украины. 2009. С. 31.
  3. Горобей В.П. Устройство для аэрации пульпы при флотации: а.с. № 1748878. СССР. Опубликовано 23.07.92, Бюл. № 27.
  4. Зельдович Я.Б. К теории образования новой фазы. Кавитация // Журн. эксперим. и теорет. физики. 1942. Т. 12. Вып. 11/12. С. 525-538.
  5. Fisher J.C. The fracture of liquids // J. Appl. Fhys. 1948. V. 19. Pp. 1062-1067.
  6. Корнфельд М. Упругость и прочность жидкостей. М.; Л.: Гостехтеориздат, 1951. 107 с.
  7. Флинн Г. Физика акустической кавитации в жидкости // Физическая акустика / под ред. У. Мэзона. Методы и приборы ультразвуковых исследований. М.: Мир, 1967. Т. 1. С. 7-138.
  8. Рой Н.А. Возникновение и протекание ультразвуковой кавитации. Обзор // Акуст. журн. 1957. Т. 3. № 1. С. 3-21.
  9. Сиротюк М.Г. Экспериментальные исследования ультразвуковой кавитации // Физика и техника мощного ультразвука. Мощные ультразвуковые поля / под ред. Л.Д. Розенберга. М.: Наука, 1968. С. 167-220.
  10. Богач А.А., Уткин А.В. Прочность воды при импульсном растяжении // Прикладная механика и техническая физика. 2000. Т. 41. № 4. С. 198-205.
  11. Рубинштейн Ю.Б., Горобей В.П., Шадрин Г.Н., Таримов О.Е. Оценка прочностных свойств пен при флотации угля // Кокс и химия. 1993. № 2. С. 9-12.
  12. Рубинштейн Ю.Б., Горобей В.П., Шадрин Г.Н., Таримов О.Е. Влияние прочностных свойств пен на оптимизацию реагентного режима флотации угля // Кокс и химия. 1993. № 3. С. 10-12.
  13. Кавитация. URL: http://booksite.ru>fulltext/1/001/ 008/057.
  14. Пажи Д.Г., Галустов В.С. Основы техники распыливания жидкостей. М.: Химия. 1984. 254 с.
  15. Соколов Е.Я., Зингер Н.М. Струйные аппараты. М.: Энергоатомиздат, 1989. 352 с.
  16. Горобей В.П. Пневмогидравлический дождеватель: уведомление о положительном результате формальной экспертизы заявки на изобретение. Российская Федерация, заявка № 2019107468,05(014519), реш. 17.04.19.
  17. Справочник конструктора сельскохозяйственных машин. Т. 2. / под ред. инж. А.В. Красниченко. М.: Государственное научно-техническое издательство машиностроительной литературы, 1961. 862 с.
  18. Левицкий Н.И. Теория механизмов и машин. М.: Наука, 1990. 592 с.
  19. Каннингэм П.Г., Допкин Р.Ж. Длина участка разрушения струи и смешивающей горловины жидкоструйного насоса для перекачки газа. Теоретические основы инженерных расчетов. М.: Мир, 1974. № 3. С. 128-141.
  20. Исаев А.И., Майрович Ю.И., Сафарбаков А.М., Ходацкий С.А. Влияние геометрических характеристик завихрителя на вихревую структуру потока в импульсной камере сгорания // Труды МАИ. Выпуск № 88. URL: www.mai.ru/science/trudy/.
  21. Лаптев А.Г., Николаев Н.А., Башаров М.М. Методы интенсификации и моделирования тепломассообменных процессов: учебно-справочное пособие. М.: «Теплотехник». 2011. 335 с.
  22. Абезин В.Г., Семененко С.Я., Скрипкин Д.В., Беспалов А.Г. Разработка и обоснование конструкции дождевателя для мобильных дождевальных машин // Известия Нижневолжского агроуниверситетского комплекса. 2015. № 1 (37). С. 1-5.
  23. Скобельцын Ю.А., Гумбаров А.Д., Сенчуков Г.А. и др. Мелкодисперсное дождевание сельскохозяйственных культур: учебное пособие. Краснодар: КСХИ. 1990. 126 с.

版权所有 © Gorobej V.P., Moskalevich V.Y., 2020

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##