Increase in performance of air-sieve grain-cleaning machines in separating heap of sunflower seeds

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The performance of grain cleaning machines (GCM) of the air-sieve type and the quality of grain cleaning depend on the uniformity of the loading of the sieves, which is determined by the design of the supply-distribution device. A decrease in the inclination angle of the feeding device surface leads to a decrease in the intensity of supply of the heap closer to the axis, further reduction leads the heap to stop in this area. Therefore, the inclination angle reduction for the feeding device is below the friction coefficient that leads to a decrease in the loading distribution uniformity.

AIMS: Determination the dependence of the sorting process parameter of a heap of sunflower seeds on the material for the feeding device surface in the MVU-1500 air-sieve GCM.

METHODS: To determine the inclination angle of the feeding device in the process of sorting the Lakomka variety sunflower seeds, which affects the parameters of the pneumatic system of the MVU-1500 air-sieve GCM, an experimental installation was built to determine the heap movement velocity. The used methods were a privately developed methodology, methods of mathematical statistics and laws of theoretical mechanics.

RESULTS: The movement velocity of the heap of sunflower seeds on the surface of the feeding device were considered. Using the feeding device, the experimental and theoretical movement velocities of the heap of sunflower seeds on its surface made of metal and fluoropolymer included in the standard and improved MVU-1500 air-sieve GCMs were determined.

CONCLUSIONS: The practical value of the study lies in determining the theoretical movement velocity of the heap of sunflower seeds on the GCM’s feeding device surface which depends on its inclination angle as well as on the optimal material for it.

About the authors

Igor E. Priporov

Kuban State Agrarian University named after I.T. Trubilin

Author for correspondence.
Email: i.priporov@yandex.ru
ORCID iD: 0000-0002-8201-2819
SPIN-code: 4330-0224

Cand. Sci. (Tech.), Associate Professor of the Tractors, Automobiles and Technical Mechanics Department

Russian Federation, Krasnodar

References

  1. Ahmatov AA, Orobinskij VI, Solncev VN, Kazarov KR. Raspredelenie zerna pitayushchim ustrojstvom gravitacionnogo tipa po shirine zernoochistitel’noj mashiny. Nauka vchera, segodnya, zavtra: materialy. 2016:34–39. (in Russ.)
  2. Avdeev AV. Perspektivy mekhanizacii posleuborochnoj obrabotki zerna. Tractors and Agricultural Machinery. 2001;5:18–23 (in Russ.)
  3. Aniskin VI, Zyulin AN. Razvitie zernoochistitel‘noj tekhniki. Tractors and Agricultural Machinery. 2005;1:6–8 (in Russ.)
  4. Ahmatov AA, Solncev VN, Orobinskij VI. Formirovanie zernovogo voroha v bunkere pitayushchego ustrojstva. In: Modern trends in the development of technologies and technical means in agriculture: Proceedings of the International Scientific and Practical Conference dedicated to the 80th anniversary of A.P. Tarasenko, Doctor of Technical Sciences, Honored Worker of Science and Technology of the Russian Federation, Professor of the Department of Agricultural Machines of the Voronezh State Impact Agrarian University named after Emperor Peter I, Voronezh, January 10, 2017. Voronezh: Voronezh State Agrarian University. Emperor Peter I. Voronezh: Voronezhskiy gosudarstvennyy agrarnyy universitet im. Imperatora Petra I; 2017:31–36 (in Russ.).
  5. Zharkih VYu, Tarasenko AP. Obzor tekhnicheskih reshenij dlya ravnomernoj zagruzki zernoochistitel’nyh mashin. Nauchno-issledovatel’skie publikacii. 2015;3(23):76–81 (in Russ.)
  6. Zagorujko MG, Starostin IA, Kocar’ YuA. Avtomatizirovannaya sistema upravleniya tekhnologicheskim processom zernoochistitel’noj mashiny. Agrarnyj nauchnyj zhurnal. 2020;6:93–98 (in Russ.) doi: 10.28983/asj.y2020i6pp93-98
  7. Badretdinov I, Mudarisov S, Tuktarov M, et al. Mathematical modeling of the grain material separation in the pneumatic system of the grain-cleaning machine. Journal of Applied Engineering Science. 2019;17(4):529–534 (in Russ.) doi: 10.5937/jaes17-22640
  8. Badretdinov I, Mudarisov S, Lukmanov R, et al. Mathematical modeling and study of the grain cleaning machine sieve frame operation. IN-MATEH – Agricultural Engineering. 2020;60(1):19–28. (in Russ.) doi: 10.35633/inmateh-60-02
  9. Ahmatov A.A. Sovershenstvovanie processa raspredeleniya zernovogo voroha po shirine rabochih organov vozdushno-reshetnyh zernoochistitel’nyh mashin. [dissertation] Voronezh: Voronezhskiy gosudarstvennyy agrarnyy universitet im. Imperatora Petra I; 2017. (in Russ.)
  10. Solncev VN, CHernyshov AV. Povyshenie ravnomernosti zagruzki reshetnogo stana zernoochistitel’noj mashiny. Innovacionnye tekhnologii i tekhnicheskie sredstva dlya APK: materialy. 2018:411–414. (in Russ.)
  11. Gievskij AM, Orobinskij VI, Korolev AI, et al. Rezul’taty issledovaniya gravitacionnogo raspredelitelya zernoochistitel’noj mashiny. Innovacionnye napravleniya razvitiya tekhnologij i tekhnicheskih sredstv mekhanizacii sel’skogo hozyajstva: sbornik. Voronezh: Voronezhskiy gosudarstvennyy agrarnyy universitet im. Imperatora Petra I; 2015:266–271. (in Russ.)
  12. YAmpilov SS, Cybenov ZhB. Tekhnologii i tekhnicheskie sredstva dlya ochistki zerna s ispol’zovaniem sil gravitacii. Ulan-Ude: Izd-vo VSGTU, 2006. 167 s.
  13. Priporov IE. Mekhaniko-tekhnologicheskoe obosnovanie processa razdeleniya komponentov voroha semyan podsolnechnika na vozdushno-reshetnyh zernoochistitel’nyh mashinah. Krasnodar: KubGAU, 2016.
  14. Vasilenko PM. Teoriya dvizheniya chasticy po sherohovatym poverhnostyam sel’-skohozyajstvennyh mashin. Kuiv: UASKHN; 1960:92–94. (in Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The main view of the experimental installation for determining the input velocity of the heap into a vertical airflow: 1 – a seed tank; 2 – a seed tank flap; 3 – a metal guide; 4 – a drive device; 5 – a damper; 6 – a pneumatic channel; 7 – a sedimentation chamber for seeds; 8 – a fan; 9 – a sedimentation chamber for impurities.

Download (150KB)
3. Fig. 2. Movement of the sunflower seeds on the feeding device surface: 1 – a vertical pneumatic channel; 2 – a tank; 3, 4 – feeding devices (guides) made of fluoropolymer and metal respectively.

Download (104KB)
4. Fig. 3. Analytical model for determining the movement velocity of the heap of sunflower seeds on the feeding device surface.

Download (41KB)
5. Fig. 4. Results of determining the movement velocity of components of the heap from the feeding device made of: a – metal; b – fluoropolymer.

Download (192KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies