PROGRAMMABLE DNA CLEAVAGE BY CYANOBACTERIAL ARGONAUTES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Argonautes are an evolutionarily conserved family of proteins that can recognize and cleave nucleic acids using complementary guide molecules. Eukaryotic Argonautes play a major role in RNA interference, using small RNAs to target mRNA. Prokaryotic Argonautes are much more diverse and predominantly recognize target DNA. Studying new Argonaute proteins, which are active under a wide range of conditions, is important for both understanding their functions and developing new genetic tools. The disadvantage of many previously studied Argonautes is their low activity at low and moderate temperatures. In this work, we isolated and characterized Argonautes from psychrotolerant cyanobacteria Cyanobacterium stanieri and Calothrix sp., CstAgo and CspAgo. Both proteins use short DNA guides to recognize DNA targets. CstAgo does not have strong preferences for the structure of the 5' end of guide DNA, while CspAgo demonstrates a weak preference for the 5'-terminal nucleotide. CstAgo has higher activity and is able to cleave single-stranded DNA at temperatures between 10 and 50 °C. CspAgo is more cold-sensitive but is capable of cleaving double-stranded plasmid DNA using specific guides. Therefore, the studied proteins could potentially be used for genetic manipulations of DNA.

作者简介

Y. Zaitseva

Institute of Gene Biology, Russian Academy of Sciences

Moscow, Russia

E. Kropocheva

Institute of Gene Biology, Russian Academy of Sciences

Moscow, Russia

A. Kulbachinskiy

Institute of Gene Biology, Russian Academy of Sciences

Email: avkalb@yandex.ru
Moscow, Russia

D. Gelfenbein

Institute of Gene Biology, Russian Academy of Sciences

Email: es_dar@inbox.ru
Moscow, Russia

参考

  1. Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., and Benning, C. (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development, EMBO J., 17, 170-180, https://doi.org/10.1093/emboj/17.1.170.
  2. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 391, 806-811, https://doi.org/10.1038/35888.
  3. Olina, A. V., Kulbachinskiy, A. V., Aravin, A. A., and Esyunina, D. M. (2018) Argonaute proteins and mechanisms of RNA interference in eukaryotes and prokaryotes, Biochemistry (Moscow), 83, 483-497, https://doi.org/10.1134/S0006297918050024.
  4. Jadhav, V., Vaishnav, A., Fitzgerald, K., and Maier, M. A. (2024) RNA interference in the era of nucleic acid therapeutics, Nat. Biotechnol., 42, 394-405, https://doi.org/10.1038/s41587-023-02105-y.
  5. Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D. K., and Aravin, A. A. (2013) Bacterial argonaute samples the transcriptome to identify foreign DNA, Mol. Cell, 51, 594-605, https://doi.org/10.1016/j.molcel.2013.08.014.
  6. Swarts, D. C., Jore, M. M., Westra, E. R., Zhu, Y., Janssen, J. H., Snijders, A. P., Wang, Y., Patel, D. J., Berenguer, J., Brouns, S. J. J., and van der Oost, J. (2014) DNA-guided DNA interference by a prokaryotic Argonaute, Nature, 507, 258-261, https://doi.org/10.1038/nature12971.
  7. Makarova, K. S., Wolf, Y. I., van der Oost, J., and Koonin, E. V. (2009) Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements, Biol. Direct, 4, 29, https://doi.org/10.1186/1745-6150-4-29.
  8. Parker, J. S., Roe, S. M., and Barford, D. (2004) Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity, EMBO J., 23, 4727-4737, https://doi.org/10.1038/sj.emboj.7600488.
  9. Yuan, Y. R., Pei, Y., Ma, J. B., Kuryavyi, V., Zhadina, M., Meister, G., Chen, H. Y., Dauter, Z., Tuschl, T., and Patel, D. J. (2005) Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage, Mol. Cell, 19, 405-419, https://doi.org/10.1016/j.molcel.2005.07.011.
  10. Ryazansky, S., Kulbachinskiy, A., and Aravin, A. A. (2018) The expanded universe of prokaryotic argonaute proteins, mBio, 9, https://doi.org/10.1128/mBio.01935-18.
  11. Lisitskaya, L., Aravin, A. A., and Kulbachinskiy, A. (2018) DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins, Nat. Commun., 9, 5165, https://doi.org/10.1038/s41467-018-07449-7.
  12. Kropocheva, E. V., Lisitskaya, L. A., Agapov, A. A., Musabirov, A. A., Kulbachinskiy, A. V., and Esyunina, D. M. (2022) Prokaryotic argonaute proteins as a tool for biotechnology, Mol. Biol., 56, 854-873, https://doi.org/10.1134/S0026893322060103.
  13. Miyoshi, T., Ito, K., Murakami, R., and Uchiumi, T. (2016) Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute, Nat. Commun., 7, 11846, https://doi.org/10.1038/ncomms11846.
  14. Matsumoto, N., Nishimasu, H., Sakakibara, K., Nishida, K. M., Hirano, T., Ishitani, R., Siomi, H., Siomi, M. C., and Nureki, O. (2016) Crystal structure of silkworm PIWI-clade Argonaute Siwi bound to piRNA, Cell, 167, 484-497, e489, https://doi.org/10.1016/j.cell.2016.09.002.
  15. Lisitskaya, L., Shin, Y., Agapov, A., Olina, A., Kropocheva, E., Ryazansky, S., Aravin, A. A., Esyunina, D., Murakami, K. S., and Kulbachinskiy, A. (2022) Programmable RNA targeting by bacterial Argonaute nucleases with unconventional guide binding and cleavage specificity, Nat. Commun., 13, 4624, https://doi.org/10.1038/s41467-022-32079-5.
  16. Kuzmenko, A., Yudin, D., Ryazansky, S., Kulbachinskiy, A., and Aravin, A. A. (2019) Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea, Nucleic Acids Res., 47, 5822-5836, https://doi.org/10.1093/nar/gkz379.
  17. Olina, A., Agapov, A., Yudin, D., Sutormin, D., Galivondzhyan, A., Kuzmenko, A., Severinov, K., Aravin, A. A., and Kulbachinskiy, A. (2023) Bacterial Argonaute proteins aid cell division in the presence of topoisomerase inhibitors in Escherichia coli, Microbiol. Spectr., 11, e0414622, https://doi.org/10.1128/spectrum.04146-22.
  18. Lisitskaya, L., Kropocheva, E., Agapov, A., Prostova, M., Panteleev, V., Yudin, D., Ryazansky, S., Kuzmenko, A., Aravin, A. A., Esyunina, D., and Kulbachinskiy, A. (2023) Bacterial Argonaute nucleases reveal different modes of DNA targeting in vitro and in vivo, Nucleic Acids Res., 51, 5106-5124, https://doi.org/10.1093/nar/gkad290.
  19. Zander, A., Willkomm, S., Ofer, S., van Wolferen, M., Egert, L., Buchmeier, S., Stockl, S., Tinnefeld, P., Schneider, S., Klingl, A., Albers, S. V., Werner, F., and Grohmann, D. (2017) Guide-independent DNA cleavage by archaeal Argonaute from Methanocaldococcus jannaschii, Nat. Microbiol., 2, 17034, https://doi.org/10.1038/nmicrobiol.2017.34.
  20. Swarts, D. C., Hegge, J. W., Hinojo, I., Shilmori, M., Ellis, M. A., Dumrongkulraksa, J., Terns, R. M., Terns, M. P., and van der Oost, J. (2015) Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA, Nucleic Acids Res., 43, 5120-5129, https://doi.org/10.1093/nar/gkv415.
  21. Olina, A., Kuzmenko, A., Ninova, M., Aravin, A. A., Kulbachinskiy, A., and Esyunina, D. (2020) Genome-wide DNA sampling by Ago nuclease from the cyanobacterium Synechococcus elongatus, RNA Biol., 17, 677-688, https://doi.org/10.1080/15476286.2020.1724716.
  22. Hegge, J. W., Swarts, D. C., Chandrados, S. D., Cui, T. J., Kneppers, J., Jinek, M., Joo, C., and van der Oost, J. (2019) DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute, Nucleic Acids Res., 47, 5809-5821, https://doi.org/10.1093/nar/gkz306.
  23. Kropocheva, E., Kuzmenko, A., Aravin, A. A., Esyunina, D., and Kulbachinskiy, A. (2021) A programmable pAgo nuclease with universal guide and target specificity from the mesophilic bacterium Kurthia massiliensis, Nucleic Acids Res., 49, 4054-4065, https://doi.org/10.1093/nar/gkab182.
  24. Agapov, A., Panteleev, V., Kropocheva, E., Kanevskaya, A., Esyunina, D., and Kulbachinskiy, A. (2024) Prokaryotic Argonaute nuclease cooperates with co-encoded RNase to acquire guide RNAs and target invader DNA, Nucleic Acids Res., https://doi.org/10.1093/nar/gkae1345.
  25. Kaya, E., Doxzen, K. W., Knoll, K. R., Wilson, R. C., Strutt, S. C., Kranzusch, P. J., and Doudna, J. A. (2016) A bacterial Argonaute with noncanonical guide RNA specificity, Proc. Natl. Acad. Sci. USA, 113, 4057-4062, https://doi.org/10.1073/pnas.1524385113.
  26. Li, W., Liu, Y., He, R., Wang, L., Wang, Y., Zeng, W., Zhang, Z., Wang, F., and Ma, L. (2022) A programmable pAgo nuclease with RNA target preference from the psychrotolerant bacterium Mucilaginibacter paludis, Nucleic Acids Res., 50, 5226-5238, https://doi.org/10.1093/nar/gkac315.
  27. Bastiaanssen, C., Bobadilla Ugarte, P., Kim, K., Finocchio, G., Feng, Y., Anzelon, T. A., Köstlbacher, S., Tamarit, D., Ettena, T. J. G., Jinek, M., MacRae, I. J., Joo, C., Swarts, D. C., and Wu, F. (2024) RNA-guided RNA silencing by an Asgard archaeal Argonaute, Nat. Commun., 15, 5499, https://doi.org/10.1038/s41467-024-49452-1.
  28. Prostova, M., Kanevskaya, A., Panteleev, V., Lisitskaya, L., Perfilova Tugaeva, K. V., Sluchanko, N. N., Esyunina, D., and Kulbachinskiy, A. (2024) DNA-targeting short Argonautes complex with effector proteins for collateral nuclease activity and bacterial population immunity, Nat. Microbiol., 9, 1368-1381, https://doi.org/10.1038/s41564-024-01654-5.
  29. Song, X., Lei, S., Liu, S., Liu, Y., Fu, P., Zeng, Z., Yang, K., Chen, Y., Li, M., She, Q., and Han, W. (2023) Catalytically inactive long prokaryotic Argonaute systems employ distinct effectors to confer immunity via abortive infection, Nat. Commun., 14, 6970, https://doi.org/10.1038/s41467-023-42793-3.
  30. Kuzmenko, A., Ogulenko, A., Esyunina, D., Yudin, D., Petrova, M., Kudinova, A., Maslova, O., Ninova, M., Ryazansky, S., Leach, D., Aravin, A. A., and Kulbachinskiy, A. (2020) DNA targeting and interference by a bacterial Argonaute nuclease, Nature, 587, 632-637, https://doi.org/10.1038/s41586-020-2605-1.
  31. Koopal, B., Potocnik, A., Mutte, S. K., Aparicio-Maldonado, C., Lindhoud, S., Vervoort, J. J. M., Brouns, S. J. J., and Swarts, D. C. (2022) Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA, Cell, 185, 1471-1486, e1419, https://doi.org/10.1016/j.cell.2022.03.012.
  32. Zaremba, M., Dakineviciene, D., Golovinas, E., Zagorskaite, E., Stankunas, E., Lopatina, A., Sorek, R., Manakova, E., Ruksenaite, A., Silanskas, A., Asmontas, S., Grybauskas, A., Tylenyte, U., Jurgelaitis, E., Grigaitis, R., Timinskas, K., Venclovas, C., and Siksnys, V. (2022) Short prokaryotic Argonautes provide defence against incoming mobile genetic elements through NAD+ depletion, Nat. Microbiol., 7, 1857-1869, https://doi.org/10.1038/s41564-022-01239-0.
  33. Bobadilla Ugarte, P., Barendse, P., Swarts D.C. (2023) Argonaute proteins confer immunity in all domains of life, Curr. Opin. Microbiol., 74, 102313, https://doi.org/10.1016/j.mib.2023.102313.
  34. Swarts, D. C., Szczepaniak, M., Sheng, G., Chandradoss, S. D., Zhu, Y., Timmers, E. M., Zhang, Y., Zhao, H., Lou, J., Wang, Y., Joo, C., van der Oost, J. (2017) Autonomous Generation and Loading of DNA Guides by Bacterial Argonaute, Mol. Cell., 65, 985-998, https://doi.org/10.1016/j.molcel.2017.01.033.
  35. Wang, Y., Sheng, G., Juranek, S., Tuschl, T., and Patel, D. J. (2008) Structure of the guide-strand-containing argonaute silencing complex, Nature, 456, 209-213, https://doi.org/10.1038/nature07315.
  36. Graver, B. A., Chakravarty, N., and Solomon, K. V. (2024) Prokaryotic Argonautes for in vivo biotechnology and molecular diagnostics, Trends Biotechnol., 42, 61-73, https://doi.org/10.1016/j.tibtech.2023.06.010.
  37. Huang, S., Wang, K., and Mayo, S. L. (2023) Genome manipulation by guide-directed Argonaute cleavage, Nucleic Acids Res., 51, 4078-4085, https://doi.org/10.1093/nar/gkad188.
  38. Esyunina, D., Okhtienko, A., Olina, A., Panteleev, V., Prostova, M., Aravin, A. A., and Kulbachinskiy, A. (2023) Specific targeting of plasmids with Argonaute enables genome editing, Nucleic Acids Res., 51, 4086-4099, https://doi.org/10.1093/nar/gkad191.
  39. Enghiad, B., Xue, P., Singh, N., Boob, A. G., Shi, C., Petrov, V. A., Liu, R., Peri, S. S., Lane, S. T., Gaither, E. D., and Zhao, H. (2022) PlasmidMaker is a versatile, automated, and high throughput end-to-end platform for plasmid construction, Nat. Commun., 13, 2697, https://doi.org/10.1038/s41467-022-30355-y.
  40. He, R., Wang, L., Wang, F., Li, W., Liu, Y., Li, A., Wang, Y., Mao, W., Zhai, C., and Ma, L. (2019) Pyrococcus furiosus Argonaute-mediated nucleic acid detection, Chem. Commun. (Camb.), 55, 13219-13222, https://doi.org/10.1039/c9cc07339f.
  41. Shin, S., Jung, Y., Uhm, H., Song, M., Son, S., Goo, J., Jeong, C., Song, J. J., Kim, V. N., and Hohng, S. (2020) Quantification of purified endogenous miRNAs with high sensitivity and specificity, Nat. Commun., 11, 6033, https://doi.org/10.1038/s41467-020-19865-9.
  42. Song, J., Hegge, J. W., Mauk, M. G., Chen, J., Till, J. E., Bhagwat, N., Azink, L. T., Peng, J., Sen, M., Mays, J., Carpenter, E. L., van der Oost, J., and Bau, H. H. (2020) Highly specific enrichment of rare nucleic acid fractions using Thermus thermophilus argonaute with applications in cancer diagnostics, Nucleic Acids Res., 48, e19, https://doi.org/10.1093/nar/gkz1165.
  43. Wu, Z., Yu, L., Shi, W., and Ma, J. (2023) Argonaute protein-based nucleic acid detection technology, Front. Microbiol., 14, 1255716, https://doi.org/10.3389/fmicb.2023.1255716.
  44. Xiao, G., Fu, X., Zhang, J., Liu, S., Wang, Z., Ye, T., and Zhang, G. (2021) Rapid and cost-effective screening of CRISPR/Cas9-induced mutants by DNA-guided Argonaute nuclease, Biotechnol. Lett., 43, 2105-2110, https://doi.org/10.1007/s10529-021-03177-z.
  45. Hirose, Y., and Katayama, M. (2021) Draft genome sequence of the phototropic cyanobacterium Rivularia sp. strain IAM M-261, Microbiol. Resour. Announc., 10, e0079021, https://doi.org/10.1128/MRA.00790-21.
  46. Liu, Y., Esyunina, D., Olovnikov, I., Teplova, M., Kulbachinskiy, A., Aravin, A. A., and Patel, D. J. (2018) Accommodation of helical imperfections in Rhodobacter sphaeroides Argonaute ternary complexes with guide RNA and target DNA, Cell Rep., 24, 453-462.
  47. Xu, X., Yang, H., Dong, H., Li, X., Liu, Q., and Feng, Y. (2024) Characterization of argonaute nucleases from mesophilic bacteria Pseudobutyrivibrio runinis, Bioresour. Bioprocess, 11, 94, https://doi.org/10.1186/s40643-024-00797-x.
  48. Cao, Y., Sun, W., Wang, J., Sheng, G., Xiang, G., Zhang, T., Shi, W., Li, C., Wang, Y., Zhao, F., and Wang, H. (2019) Argonaute proteins from human gastrointestinal bacteria catalyze DNA-guided cleavage of single- and double-stranded DNA at 37 °C, Cell Discov., 5, 38, https://doi.org/10.1038/s41421-019-0105-y.
  49. Stengel, A., Gugel, I. L., Hilger, D., Rengstl, B., Jung, H., and Nickelsen, J. (2012) Initial steps of photosystem II de novo assembly and preloading with manganese take place in biogenesis centers in Synechocystis, Plant Cell, 24, 660-675, https://doi.org/10.1105/tpc.111.093914.
  50. Hunt, E. A., Evans, T. C., Jr., and Tanner, N. A. (2018) Single-stranded binding proteins and helicase enhance the activity of prokaryotic argonautes in vitro, PLoS One, 13, e0203073, https://doi.org/10.1371/journal.pone.0203073.
  51. Vaiskunaite, R., Vainauskas, J., Morris, J. J. L., Potapov, V., and Bitinaite, J. (2022) Programmable cleavage of linear double-stranded DNA by combined action of Argonaute CbAgo from Clostridium butyricum and nuclease deficient RecBC helicase from E. coli, Nucleic Acids Res., 50, 4616-4629, https://doi.org/10.1093/nar/gkac229.
  52. Wang, Q., Rao, G. S., Marsic, T., Aman, R., and Mahfouz, M. (2024) Fusion of FokI and catalytically inactive prokaryotic Argonautes enables site-specific programmable DNA cleavage, J. Biol. Chem., 300, 107720, https://doi.org/10.1016/j.jbc.2024.107720.
  53. Zhou, B., Zheng, L., Wu, B., Yi, K., Zhong, B., Tan, Y., Liu, Q., Lio, P., and Hong, L. (2024) A conditional protein diffusion model generates artificial programmable endonuclease sequences with enhanced activity, Cell Discov., 10, 95, https://doi.org/10.1038/s41421-024-00728-2.

补充文件

附件文件
动作
1. JATS XML
2. Таблица П1. Олигонуклеотиды, использованные в работе.
下载 (269KB)
3. Рисунок П1. Расщепление плазмидной ДНК Аргонавтом CbAgo.
下载 (354KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».