Защитная роль пластохинона в ранние сроки термического ожога кожи II степени
- Авторы: Пашкевич Н.И.1, Пыхова Е.С.2, Ашихмин А.А.2, Ветошкина Д.В.2, Осочук С.С.1, Борисова-Мубаракшина М.М.2
-
Учреждения:
- Витебский государственный ордена Дружбы народов медицинский университет
- ФИЦ "Пущинский научный центр биологических исследований РАН", Институт фундаментальных проблем биологии РАН
- Выпуск: Том 90, № 7 (2025): Новые достижения в фотобиохимии и фотобиофизике (специальный выпуск)
- Страницы: 1043-1062
- Раздел: Статьи
- URL: https://journals.rcsi.science/0320-9725/article/view/356229
- DOI: https://doi.org/10.31857/S0320972525070123
- EDN: https://elibrary.ru/KABHKA
- ID: 356229
Цитировать
Аннотация
Термические ожоги кожных покровов сопровождаются не только локальными тканевыми изменениями, но и развитием системных нарушений, способствующих генерализации воспалительного процесса. При этом повышенное образование активных форм кислорода при ожогах приводит к активации свободнорадикального окисления и развитию перекисного окисления липидов. В настоящем исследовании изучено защитное влияние пластохинона (ПХ) - природного растительного антиоксиданта - на морфологическое состояние кожных покровов, а также форму и агрегацию эритроцитов у лабораторных животных (крыс) при термическом ожоге II степени. Термический ожог приводил к снижению толщины эпидермиса, при этом увеличивалось количество гиперемированных сосудов, поврежденных волосяных фолликулов и сальных желез. Нанесение на поврежденные кожные покровы ПХ в составе липосом оказывало защитный эффект на исследуемые структуры кожи; в случае нанесения липосом без ПХ защитный эффект был менее выражен. Кроме того, термический ожог изменял состояние эритроцитов, приводя к их деформации и агрегации. Пластохинон в составе липосом, нанесенный накожно или введенный внутривенно, проявил защитный эффект на эритроциты, сопоставимый с таковым убихинона, предотвращая развитие ожог-индуцированных изменений формы эритроцитов. Однако только ПХ, введенный внутривенно, полностью предотвращал агрегацию эритроцитов, нивелируя, таким образом, негативные последствия ожога на функциональную активность эритроцитов, что указывает на эффективность применения растительного пластохинона при ожоговой травме.
Ключевые слова
Об авторах
Н. И. Пашкевич
Витебский государственный ордена Дружбы народов медицинский университет
Автор, ответственный за переписку.
Email: oss62@mail.ru
Витебск, Республика Беларусь
Е. С. Пыхова
ФИЦ "Пущинский научный центр биологических исследований РАН", Институт фундаментальных проблем биологии РАН
Email: mubarakshinamm@gmail.com
Пущино, Московская обл., Россия
А. А. Ашихмин
ФИЦ "Пущинский научный центр биологических исследований РАН", Институт фундаментальных проблем биологии РАН
Email: mubarakshinamm@gmail.com
Пущино, Московская обл., Россия
Д. В. Ветошкина
ФИЦ "Пущинский научный центр биологических исследований РАН", Институт фундаментальных проблем биологии РАН
Email: mubarakshinamm@gmail.com
Пущино, Московская обл., Россия
С. С. Осочук
Витебский государственный ордена Дружбы народов медицинский университет
Email: oss62@mail.ru
Витебск, Республика Беларусь
М. М. Борисова-Мубаракшина
ФИЦ "Пущинский научный центр биологических исследований РАН", Институт фундаментальных проблем биологии РАН
Email: mubarakshinamm@gmail.com
Пущино, Московская обл., Россия
Список литературы
- Parihar, A., Parihar, M. S., Milner, S., and Bhat, S. (2008) Oxidative stress and anti-oxidative mobilization in burn injury, Burns, 34, 6-17, https://doi.org/10.1016/j.burns.2007.04.009.
- Corey, E. J., Mehrotra, M. M., and Khan, A. U. (1987) Water induced dismutation of superoxide anion generates singlet molecular oxygen, Biochem. Biophys. Res. Commun., 145, 842-846, https://doi.org/10.1016/0006-291X(87)91041-2.
- Møller, I. M., Jensen, P. E., and Hansson, A. (2007) Oxidative modifications to cellular components in plants, Annu. Rev. Plant Biol., 58, 459-481, https://doi.org/10.1146/annurev.arplant.58.032806.103946.
- Matrai, A. A., Varga, G., Tanczos, B., Barath, B., Varga, A., Horvath, L., Bereczky, Z., Deak, A., and Nemeth, N. (2021) In vitro effects of temperature on red blood cell deformability and membrane stability in human and various vertebrate species, Clin. Hemorheol. Microcirc., 78, 291-300, https://doi.org/10.3233/CH-211118.
- Reinhart, W. H., Singh, A., and Straub, P. W. (1989) Red blood cell aggregation and sedimentation: the role of the cell shape, Br. J. Haematol., 73, 551-556, https://doi.org/10.1111/j.1365-2141.1989.tb00296.x.
- Weber-Fishkin, S., Seidner, H. S., Gunter, G., and Frame, M. D. (2022) Erythrocyte aggregation in sudden flow arrest is linked to hyperthermia, hypoxemia, and band 3 availability, J. Thromb. Haemost., 20, 2284-2292, https://doi.org/10.1111/jth.15821.
- Endoh, Y., Kawakami, M., Orringer, E. P., Peterson, H. D., and Meyer, A. A. (1992) Causes and time course of acute hemolysis after burn injury in the rat, J. Burn Care Rehabilitat., 13, 203-209, https://doi.org/10.1097/00004630-199203000-00005.
- Ponomarev, I. A., and Guria, G. T. (2023) Dependence of the oxygen release intensity from red cells on the degree of their clustering in sludges, Biofizika, 68, 1210-1219, https://doi.org/10.31857/S0006302923060121.
- Wong, C.-H., Song, C., Heng, K.-S., Kee, I. H. C., Tien, S.-L., Kumarasinghe, P., Khin, L.-W., and Tan, K.-C. (2006) Plasma free hemoglobin: a novel diagnostic test for assessment of the depth of burn injury, Plastic Reconstruct. Surgery, 117, 1206-1213, https://doi.org/10.1097/01.prs.0000200070.66604.1e.
- Hanson, M. S., Xu, H., Flewelen, T. C., Holzhauer, S. L., Retherford, D., Jones, D. W., Frei, A. C., Pritchard, K. A., Hillery, C. A., Hogg, N., and Wandersee, N. J. (2013) A novel hemoglobin-binding peptide reduces cell-free hemoglobin in murine hemolytic anemia, Am. J. Physiol. Heart Circulat. Physiol., 304, H328-H336, https://doi.org/10.1152/ajpheart.00500.2012.
- Nakazawa, H., Ikeda, K., Shinozaki, S., Kobayashi, M., Ikegami, Y., Fu, M., Nakamura, T., Yasuhara, S., Yu, Y.-M., Martyn, J. A. J., Tompkins, R. G., Shimokado, K., Yorozu, T., Ito, H., Inoue, S., and Kaneki, M. (2017) Burn-induced muscle metabolic derangements and mitochondrial dysfunction are associated with activation of HIF-1α and mtorc1: role of protein farnesylation, Sci. Rep., 7, 6618, https://doi.org/10.1038/s41598-017-07011-3.
- Pintaudi, A. M., Tesoriere, L., D’Arpa, N., D’Amelio, L., D’Arpa, D., Bongiorno, A., Masellis, M., and Livrea, M. A. (2000) Oxidative stress after moderate to extensive burning in humans, Free Radic. Res., 33, 139-146, https://doi.org/10.1080/10715760000300691.
- Yu, E. P. K., and Bennett, M. R. (2016) The role of mitochondrial DNA damage in the development of atherosclerosis, Free Radic. Biol. Med., 100, 223-230, https://doi.org/10.1016/j.freeradbiomed.2016.06.011.
- Zhang, W.-J., Fang, Z.-M., and Liu, W.-Q. (2019) NLRP3 inflammasome activation from Kupffer cells is involved in liver fibrosis of Schistosoma japonicum-infected mice via NF-κB, Parasites Vectors, 12, 29, https://doi.org/10.1186/s13071-018-3223-8.
- Comish, P. B., Carlson, D., Kang, R., and Tang, D. (2020) Damage-associated molecular patterns and the systemic immune consequences of severe thermal injury, J. Immunol., 205, 1189-1197, https://doi.org/10.4049/jimmunol.2000439.
- Majmundar, A. J., Wong, W. J., and Simon, M. C. (2010) Hypoxia-inducible factors and the response to hypoxic stress, Mol. Cell, 40, 294-309, https://doi.org/10.1016/j.molcel.2010.09.022.
- Beiraghi-Toosi, A., Askarian, R., Sadrabadi Haghighi, F., Safarian, M., Kalantari, F., and Hashemy, S. I. (2018) Burn-induced oxidative stress and serum glutathione depletion; a cross sectional study, Emerg. (Tehran), 6, e54.
- West, A. P., and Shadel, G. S. (2017) Mitochondrial DNA in innate immune responses and inflammatory pathology, Nat. Rev. Immunol., 17, 363-375, https://doi.org/10.1038/nri.2017.21.
- Brown, G. C., and Borutaite, V. (2012) There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells, Mitochondrion, 12, 1-4, https://doi.org/10.1016/j.mito.2011.02.001.
- Principe, D. D., Avigliano, L., Savini, I., and Catani, M. V. (2011) Trans-plasma membrane electron transport in mammals: functional significance in health and disease, Antioxid. Redox Signal., 14, 2289-2318, https://doi.org/10.1089/ars.2010.3247.
- Bentinger, M., Tekle, M., and Dallner, G. (2010) Coenzyme Q – biosynthesis and functions, Biochem. Biophys. Res. Commun., 396, 74-79, https://doi.org/10.1016/j.bbrc.2010.02.147.
- Beyer, R. E. (1994) The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q, J. Bioenerg. Biomembr., 26, 349-358, https://doi.org/10.1007/BF00762775.
- Maroz, A., Anderson, R., Smith, R., and Murphy, M. (2009) Reactivity of ubiquinone and ubiquinol with superoxide and the hydroperoxyl radical: implications for in vivo antioxidant activity, Free Radic. Biol. Med., 46, 105-109, https://doi.org/10.1016/j.freeradbiomed.2008.09.033.
- James, A. M., Smith, R. A. J., and Murphy, M. P. (2004) Antioxidant and prooxidant properties of mitochondrial Coenzyme Q, Arch. Biochem. Biophys., 423, 47-56, https://doi.org/10.1016/j.abb.2003.12.025.
- Cadenas, E., Hochstein, P., and Ernster, L. (1992) Pro- and antioxidant functions of quinones and quinone reductases in mammalian cells, Adv. Enzymol. Rel. Areas Mol. Biol., 65, 97-146, https://doi.org/10.1002/9780470123119.ch3.
- Bentinger, M., Brismar, K., and Dallner, G. (2007) The antioxidant role of coenzyme Q, Mitochondrion, 7, S41-S50, https://doi.org/10.1016/j.mito.2007.02.006
- Shults, C. (2003) Coenzyme Q10 in neurodegenerative diseases, CMC, 10, 1917-1921, https://doi.org/10.2174/0929867033456882.
- Ryu, H., and Ferrante, R. J. (2005) Emerging chemotherapeutic strategies for Huntington’s disease, Expert Opin. Emerg. Drugs, 10, 345-363, https://doi.org/10.1517/14728214.10.2.345.
- Hodges, S., Hertz, N., Lockwood, K., and Lister, R. (1999) CoQ10: could it have a role in cancer management? BioFactors, 9, 365-370, https://doi.org/10.1002/biof.5520090237.
- Brea-Calvo, G., Rodríguez-Hernández, Á., Fernández-Ayala, D. J. M., Navas, P., and Sánchez-Alcázar, J. A. (2006) Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell lines, Free Radic. Biol. Med, 40, 1293-1302, https://doi.org/10.1016/j.freeradbiomed.2005.11.014.
- Nakazawa, H., Ikeda, K., Shinozaki, S., Yasuhara, S., Yu, Y., Martyn, J. A. J., Tompkins, R. G., Yorozu, T., Inoue, S., and Kaneki, M. (2019) Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle, FEBS Open Bio, 9, 348-363, https://doi.org/10.1002/2211-5463.12580.
- Wu, Y., Hao, C., Liu, X., Han, G., Yin, J., Zou, Z., Zhou, J., and Xu., C. (2020) MitoQ protects against liver injury induced by severe burn plus delayed resuscitation by suppressing the mtDNA-NLRP3 axis, Int. Immunopharmacol., 80, 106189, https://doi.org/10.1016/j.intimp.2020.106189.
- Langsjoen, P. H., and Langsjoen, A. M. (1998) Coenzyme Q10 in cardiovascular disease with emphasis on heart failure and myocardial ischaemia, Asia Pacific Heart J., 7, 160-168, https://doi.org/10.1016/S1328-0163(98)90022-7.
- Вильянен Д.В., Пашкевич Н.И., Борисова-Мубаракшина М.М., Осочук С.С. (2023) Патогенетические механизмы ожоговой болезни, связанные с окислительной деструкцией мембран, и направления их коррекции, Биофизика, 68, 160-168, https://doi.org/10.31857/S0006302923010180.
- Vetoshkina, D. V., Nikolaev, A. A., and Borisova-Mubarakshina, M. M. (2024) Antioxidant properties of plant plastoquinone in vivo and in vitro [in Russian], Biofizika, 69, 527-543, https://doi.org/10.31857/S0006302924030108.
- Santos-Pirath, I. M., Walter, L. O., Maioral, M. F., Philippus, A. C., Zatelli, G. A., Horta, P. A., Colepicolo. P., Falkenberg, M. D. B., and Santos-Silva, M. C. (2020) Apoptotic events induced by a natural plastoquinone from the marine alga Desmarestia menziesii in lymphoid neoplasms, Exp. Hematol., 86, 67-77.e2, https://doi.org/10.1016/j.exphem.2020.05.003.
- Iwashima, M., Mori, J., Ting, X., Matsunaga, T., Hayashi, K., Shinoda, D., Saito, H., Sankawa, U., and Hayashi, T. (2005) Antioxidant and antiviral activities of plastoquinones from the brown Alga Sargassum micracanthum, and a new chromene derivative converted from the plastoquinones, Biol. Pharmaceut. Bull., 28, 374-377, https://doi.org/10.1248/bpb.28.374.
- Mori, J., Iwashima, M., Wakasugi, H., Saito, H., Matsunaga, T., Ogasawara, M., Takahashi, S., Suzuki, H., and Hayashi, T. (2005) New plastoquinones isolated from the brown alga, Sargassum micracanthum, Chem. Pharm. Bull., 53, 1159-1163, https://doi.org/10.1248/cpb.53.1159.
- Markovets, A. M., Fursova, A. Z., and Kolosova, N. G. (2011) Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with Improvement of VEGF and PEDF gene expression, PLoS One, 6, e21682, https://doi.org/10.1371/journal.pone.0021682.
- Shinn, L. J., and Lagalwar, S. (2021) Treating neurodegenerative disease with antioxidants: efficacy of the bioactive phenol resveratrol and mitochondrial-targeted MitoQ and SkQ, Antioxidants, 10, 573, https://doi.org/10.3390/antiox10040573.
- Isaev, N. K., Stelmashook, E. V., Genrikhs, E. E., Korshunova, G. A., Sumbatyan, N. V., Kapkaeva, M. R., and Skulachev, V. P. (2016) Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type, Rev. Neurosci., 27, 849-855, https://doi.org/10.1515/revneuro-2016-0036.
- Kruk, J., Jemioła-Rzemińska, M., and Strzałka, K. (1997) Plastoquinol and α-tocopherol quinol are more active than ubiquinol and α-tocopherol in inhibition of lipid peroxidation, Chem. Phys. Lipids, 87, 73-80, https://doi.org/10.1016/S0009-3084(97)00027-3.
- Skulachev, V. P. (2007) A biochemical approach to the problem of aging: “Megaproject” on membrane-penetrating ions. The first results and prospects, Biochemistry (Moscow), 72, 1385-1396, https://doi.org/10.1134/S0006297907120139.
- Зиновкин Р. А., Кондратенко Н. Д., Зиновкина Л. А. (2022) Является ли NRF2 основным регулятором старения млекопитающих? Биохимия, 87, 1842-1855, https://doi.org/10.31857/S0320972522120053.
- Bayrak, N., Yıldırım, H., Yıldız, M., Radwan, M. O., Otsuka, M., Fujita, M., Tuyun, A. F., and Ciftci, H. I. (2019) Design, synthesis, and biological activity of plastoquinone analogs as a new class of anticancer agents, Bioorg. Chem., 92, 103255, https://doi.org/10.1016/j.bioorg.2019.103255.
- Ciftci, H. I., Bayrak, N., Yıldırım, H., Yıldız, M., Radwan, M. O., Otsuka, M., Fujita, M., and Tuyun, A. F. (2019) Discovery and structure-activity relationship of plastoquinone analogs as anticancer agents against chronic myelogenous leukemia cells, Arch. Pharm., 352, 1900170, https://doi.org/10.1002/ardp.201900170.
- Janeczko, M., Demchuk, O. M., Strzelecka, D., Kubiński, K., and Masłyk, M. (2016) New family of antimicrobial agents derived from 1,4-naphthoquinone, Eur. J. Med. Chem., 124, 1019-1025, https://doi.org/10.1016/j.ejmech.2016.10.034.
- Shrestha, J. P., Baker, C., Kawasaki, Y., Subedi, Y. P., Vincent De Paul, N. N., Takemoto, J. Y., and Chang, C.-W. T. (2017) Synthesis and bioactivity investigation of quinone-based dimeric cationic triazolium amphiphiles selective against resistant fungal and bacterial pathogens, Eur. J. Med. Chem., 126, 696-704, https://doi.org/10.1016/j.ejmech.2016.12.008.
- Ryu, C.-K., Nho, J.-H., Jin, G., Oh, S. Y., and Choi, S. J. (2014) Synthesis of benzofuro[6,7-d]thiazoles, benzofuro[7,6-d]thiazoles and 6-arylaminobenzo[d]thiazole-4,7-diones as antifungal agent, Chem. Pharm. Bull., 62, 668-674, https://doi.org/10.1248/cpb.c14-00146.
- Borisova-Mubarakshina, M. M., Vetoshkina, D. V., and Ivanov, B. N. (2019) Antioxidant and signaling functions of the plastoquinone pool in higher plants, Physiol. Plant., 166, 181-198, https://doi.org/10.1111/ppl.12936.
- Hundal, T., Forsmark-Andrée, P., Ernster, L., and Andersson, B. (1995) Antioxidant activity of reduced plastoquinone in chloroplast thylakoid membranes, Arch. Biochem. Biophys., 324, 117-122, https://doi.org/10.1006/abbi.1995.9920.
- Mubarakshina, M. M., and Ivanov, B. N. (2010) The production and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes, Physiol. Plant., 140, 103-110, https://doi.org/10.1111/j.1399-3054.2010.01391.x.
- Afanas’ev, I. B. (1991) Superoxide ion. 2: Oxygen radicals in biology, CRC Press, Boca Raton, https://doi.org/10.1201/9780203710166.
- Gruszka, J., Pawlak, A., and Kruk, J. (2008) Tocochromanols, plastoquinol, and other biological prenyllipids as singlet oxygen quenchers – determination of singlet oxygen quenching rate constants and oxidation products, Free Radic. Biol. Med., 45, 920-928, https://doi.org/10.1016/j.freeradbiomed.2008.06.025.
- Rudenko, N. N., Vetoshkina, D. V., Marenkova, T. V., and Borisova-Mubarakshina, M. M. (2023) Antioxidants of non-enzymatic nature: their function in higher plant cells and the ways of boosting their biosynthesis, Antioxidants, 12, 2014, https://doi.org/10.3390/antiox12112014.
- Sanchez-Cruz, P., Santos, A., Diaz, S., and Alegría, A. E. (2014) Metal-independent reduction of hydrogen peroxide by semiquinones, Chem. Res. Toxicol., 27, 1380-1386, https://doi.org/10.1021/tx500089x.
- Khorobrykh, S., and Tyystjärvi, E. (2018) Plastoquinol generates and scavenges reactive oxygen species in organic solvent: potential relevance for thylakoids, Biochim. Biophys. Acta, 1859, 1119-1131, https://doi.org/10.1016/j.bbabio.2018.07.003.
- Naydov, I., Kozuleva, M., Ivanov, B., Borisova-Mubarakshina, M., and Vilyanen, D. (2024) Pathways of oxygen-dependent oxidation of the plastoquinone pool in the dark after illumination, Plants, 13, 3479, https://doi.org/10.3390/plants13243479.
- Skowronek, M., Jemioła-Rzemińska, M., Kruk, J., and Strzałka, K. (1996) Influence of the redox state of ubiquinones and plastoquinones on the order of lipid bilayers studied by fluorescence anisotropy of diphenylhexatriene and trimethylammonium diphenylhexatriene, Biochim. Biophys. Acta, 1280, 115-119, https://doi.org/10.1016/0005-2736(95)00264-2.
- Jemiota-Rzemińska, M., Latowski, D., and Strzałka, K. (2001) Incorporation of plastoquinone and ubiquinone into liposome membranes studied by HPLC analysis, Chem. Phys. Lipids, 110, 85-94, https://doi.org/10.1016/S0009-3084(00)00227-9.
- Lee, W.-C., and Tsai, T.-H. (2010) Preparation and characterization of liposomal coenzyme Q10 for in vivo topical application, Int. J. Pharmaceut., 395, 78-83, https://doi.org/10.1016/j.ijpharm.2010.05.006.
- Verma, D. D., Hartner, W. C., Thakkar, V., Levchenko, T. S., and Torchilin, V. P. (2007) Protective effect of coenzyme Q10-loaded liposomes on the myocardium in rabbits with an acute experimental myocardial infarction, Pharm. Res., 24, 2131-2137, https://doi.org/10.1007/s11095-007-9334-0.
- Takahashi, T., Yamaguchi, T., Shitashige, M., Okamoto, T., and Kishi, T. (1995) Reduction of ubiquinone in membrane lipids by rat liver cytosol and its involvement in the cellular defence system against lipid peroxidation, Biochem. J., 309, 883-890, https://doi.org/10.1042/bj3090883.
- Coombes, E. J., Shakespeare, P. G., and Batstone, G. F. (1980) Lipoprotein changes after burn injury in man, J. Trauma, 20, 971-975, https://doi.org/10.1097/00005373-198011000-00012.
- Harris, R. L., Cottam, G. L., Johnston, J. M., and Baxter, C. R. (1981) The pathogenesis of abnormal erythrocyte morphology in burns, J. Trauma, 21, 13-21, https://doi.org/10.1097/00005373-198101000-00002.
- Pashkevich, N. I., Vilyanen, D. V., Marcinkevich, A. F., Borisova-Mubarakshina, M. M., and Osochuk, S. S. (2024) The effect of liposomes of various compositions on the skin and its derivatives after II-IIIA degree thermal burns, Acta Naturae, 16, 67-76, https://doi.org/10.32607/actanaturae.27329.
- Волошина Е.В., Зубова С.В., Прохоренко С.В., Косякова Н.И., Прохоренко И.Р. (2014) Сравнение эффектов разных хемотипов липополисахаридов из Escherichia coli и Salmonella на синтез TNFα и IL-6 макрофагоподобными клетками ТНР-1, Мед. иммунол., 11, 509, https://doi.org/10.15789/1563-0625-2009-6-509-514.
- MacMillan, F., Lendzian, F., Renger, G., and Lubitz, W. (1995) EPR and ENDOR investigation of the primary electron acceptor radical anion QA•− in iron-depleted photosystem II membrane fragments, Biochemistry, 34, 8144-8156, https://doi.org/10.1021/bi00025a021.
- Kurreck, J., Schödel, R., and Renger, G. (2000) Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and Photosystem II (PS II) membrane fragments, Photosynth. Res., 63, 171-182, https://doi.org/10.1023/A:1006303510458.
- Kruk, J., and Karpinski, S. (2006) An HPLC-based method of estimation of the total redox state of plastoquinone in chloroplasts, the size of the photochemically active plastoquinone-pool and its redox state in thylakoids of Arabidopsis, Biochim. Biophys. Acta, 1757, 1669-1675, https://doi.org/10.1016/j.bbabio.2006.08.004.
- Francia, F. (2014) Isolation of plastoquinone from spinach by HPLC, J. Chromatogr. Sep. Tech., 05, https://doi.org/10.4172/2157-7064.1000242.
- Khoshneviszadeh, R., Fazly Bazzaz, B. S., Housaindokht, M. R., Ebrahim-Habibi, A., and Rajabi, O. (2015) UV spectrophotometric determination and validation of hydroquinone in liposome, Iran J. Pharm. Res., 14, 473-478.
- Бергхоф П.К. (1999) Мелкие домашние животные. Болезни и лечение, Аквариум, Москва, 224 с.
- Гиммельфарб Г. Н. (1984) Анестезия у экспериментальных животных, Фан, Ташкент.
- Бунятян А. А., Буров Н. Е., Гологорский В. А., Дамир Е. А., Долина О. А., Зильбер А. П., Козлов И. А., Малышев В. Д., Маневич Л. Е., Михельсон В. А., Маневич А. З., Мещеряков А. В., Омаров Х. Т., Осипова Н. А., Стащук В. Ф., Суслов В. В. (1994) Руководство по анестезиологии, Медицина, Москва.
- Деркачев В. С., Сай А. В. (2005) Ожоговая болезнь: учебно-методическое пособие, Белорусский государственный медицинский университет.
- Gilpin, D. A. (1996) Calculation of a new Meeh constant and experimental determination of burn size, Burns, 22, 607-611, https://doi.org/10.1016/S0305-4179(96)00064-2.
- Андреев Ю. Н., Баркаган З. С., Буланов А. Ю., Воробьев А. И., Воробьев П. А. (2002) Руководство по гематологии, Том 3, Ньюдиамед, Москва.
- Блиняева Л. Г., Лемешевский В. О., Синелева М. В. (2018) Физиология крови: учебно-методическое пособие, ИВЦ Минфина, Минск.
- Povzun, A. S., Krylov, K. M., Krylov, P. K., Furman, I. B., Belousova, I. E., Michunskii, K. E., and Orlova, O. V. (2017) Toxic epidermal necrolysis, problems of diagnosis and therapy, Ann. Crit. Care, 2, 69-75, https://doi.org/10.21320/1818-474X-2017-2-69-75.
- Churilova, I. V., Zinov’ev, E. V., Paramonov, B. A., Drozdova, Yu. I., Sidel’nikov, V. O., and Chebotarev, V. Yu. (2002) Effect of Erysod (erythrocyte superoxide dismutase) on blood concentration of reactive oxygen species in patients with severe burns and burn shock, Bull. Exp. Biol. Med., 134, 454-456, https://doi.org/10.1023/A:1022638213724.
- Vasil’chuk, I. M., Pogorelaia, N. F., and Tkachenko, N. S. (1992) Prediction of the severity of the course of a pathologic process at various stages of burns using phytolectins [in Russian], Clin. Surg., 3, 9-11.
- Baskurt, O. K., and Meiselman, H. J. (2008) RBC aggregation: more important than RBC adhesion to endothelial cells as a determinant of in vivo blood flow in health and disease, Microcirculation, 15, 585-590, https://doi.org/10.1080/10739680802107447.
- Pires, I. S., and Palmer, A. F. (2020) Tangential flow filtration of haptoglobin, Biotechnol. Prog., 36, e3010, https://doi.org/10.1002/btpr.3010.
- De Leeuw, J., De Vijlder, H., Bjerring, P., and Neumann, H. (2009) Liposomes in dermatology today, Acad. Dermatol. Venereol., 23, 505-516, https://doi.org/10.1111/j.1468-3083.2009.03100.x.
- Guidoni, M., De Christo Scherer, M. M., Figueira, M. M., Schmitt, E. F. P., De Almeida, L. C., Scherer, R., Bogusz, S., and Fronza, M. (2019) Fatty acid composition of vegetable oil blend and in vitro effects of pharmacotherapeutical skin care applications, Braz. J. Med. Biol. Res., 52, e8209, https://doi.org/10.1590/1414-431x20188209.
- Ribeiro Barros Cardoso, C., Aparecida Souza, M., Amália Vieira Ferro, E., Favoreto, S., and Deolina Oliveira Pena, J. (2004) Influence of topical administration of n‐3 and n‐6 essential and n‐9 nonessential fatty acids on the healing of cutaneous wounds, Wound Repair Regener., 12, 235-243, https://doi.org/10.1111/j.1067-1927.2004.012216.x.
- Fang, C.-L., Aljuffali, I. A., Li, Y.-C., and Fang, J.-Y. (2014) Delivery and targeting of nanoparticles into hair follicles, Ther. Deliv., 5, 991-1006, https://doi.org/10.4155/tde.14.61.
- Kawashima, H., and Yoshizawa, K. (2023) The physiological and pathological properties of Mead acid, an endogenous multifunctional n-9 polyunsaturated fatty acid, Lipids Health Dis., 22, 172, https://doi.org/10.1186/s12944-023-01937-6.
- Hilton, J. G. (1985) Effects of thermal trauma on dog erythrocyte ATPase and shape, Burns, 12, 78-83, https://doi.org/10.1016/0305-4179(85)90031-2.
- Vtiurin, B. V., Kaem, R. I., and Chervonskaia, N. V. (1982) Changes in erythrocyte membrane and erythrocyte shape during burn septicotoxemia, Bull. Exp. Biol. Med., 94, 117-119.
- Skulachev, V. P. (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases, J. Alzheimers Dis., 28, 283-289, https://doi.org/10.3233/JAD-2011-111391.
- Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Yu., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Yu., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., et al.(2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 1273-1287, https://doi.org/10.1134/S0006297908120018.
- Beyer, R. E., Segura-Aguilar, J., Di Bernardo, S., Cavazzoni, M., Fato, R., Fiorentini, D., Galli, M. C., Setti, M., Landi, L., and Lenaz, G. (1996) The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems, Proc. Natl. Acad. Sci. USA, 93, 2528-2532, https://doi.org/10.1073/pnas.93.6.2528.
- Navarro, F., Villalba, J. M., Crane, F. L., Mackellar, W. C., and Navas, P. (1995) A phospholipid-dependent NADH-coenzyme Q reductase from liver plasma membrane, Biochem. Biophys. Res. Commun., 212, 138-143, https://doi.org/10.1006/bbrc.1995.1947.
- Nordman, T., Xia, L., Björkhem-Bergman, L., Damdimopoulos, A., Nalvarte, I., Arnér, E. S. J., Spyrou, G., Eriksson, L. C., Björnstedt, M., and Olsson, J. M. (2003) Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase, BioFactors, 18, 45-50, https://doi.org/10.1002/biof.5520180206.
- Xia, L., Björnstedt, M., Nordman, T., Eriksson, L. C., and Olsson, J. M. (2001) Reduction of ubiquinone by lipoamide dehydrogenase: an antioxidant regenerating pathway, Eur. J. Biochem., 268, 1486-1490, https://doi.org/10.1046/j.1432-1327.2001.02013.x
- Xia, L., Nordman, T., Olsson, J. M., Damdimopoulos, A., Björkhem-Bergman, L., Nalvarte, I., Eriksson, L. C., Arnér, E. S. J., Spyrou, G., and Björnstedt, M. (2003) The mammalian cytosolic selenoenzyme thioredoxin reductase reduces ubiquinone, J. Biol. Chem., 278, 2141-2146, https://doi.org/10.1074/jbc.M210456200.
- Arroyo, A., Navarro, F., Navas, P., and Villalba, J. M. (1998) Ubiquinol regeneration by plasma membrane ubiquinone reductase, Protoplasma, 205, 107-113, https://doi.org/10.1007/BF01279300.
Дополнительные файлы


