Исследование переноса электронов в фотосистеме 1 с помощью высокочастотной ЭПР-спектроскопии: памяти профессора Клауса Мёбиуса (1936-2024)
- Авторы: Птушенко В.В.1, Семенов А.Ю.1
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского
- Выпуск: Том 90, № 7 (2025): Новые достижения в фотобиохимии и фотобиофизике (специальный выпуск)
- Страницы: 903-914
- Раздел: Статьи
- URL: https://journals.rcsi.science/0320-9725/article/view/356219
- DOI: https://doi.org/10.31857/S0320972525070023
- EDN: https://elibrary.ru/JYYDTG
- ID: 356219
Цитировать
Аннотация
Об авторах
В. В. Птушенко
Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского
Email: semenov@belozersky.msu.ru
Москва
А. Ю. Семенов
Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского
Email: semenov@belozersky.msu.ru
Москва
Список литературы
- Möbius, K., Plato, M., and Savitsky, A. (2022) The Möbius Strip Topology: History, Science, and Applications in Nanotechnology, Materials, and the Arts, Jenny Stanford Publishing, https://doi.org/10.1201/9781003256298.
- Honerjäger, R. (1951) Microwave spectroscopy [in German], Naturwissenschaften, 38, 34-39, https://doi.org/10.1007/BF00716170.
- Honerjäger, R. (1958) Paramagnetic electron resonance [in German], Fortsch. Chem. Forsch., 3, 722-737, https://doi.org/10.1007/BFb0051770.
- Möbius, K., Savitsky, A., Malferrari, M., Francia, F., Mamedov, M. D., Semenov, A. Y., Lubitz, W., and Venturoli, G. (2020) Soft dynamic confinement of membrane proteins by dehydrated trehalose matrices: high-field EPR and fast-laser studies, Appl. Magn. Reson., 51, 773-850, https://doi.org/10.1007/s00723-020-01240-y.
- Möbius, K. (1965) Investigation of simple π-electron systems using electron spin resonance and polarography: Part I. Experiment and theory [in German], Zeitschr. Naturforsch. A, 20, 1093-1102.
- Möbius, K. (2022) Autobiographical sketches (2021), Appl. Magn. Reson., 53, 467-489, https://doi.org/10.1007/s00723-021-01410-6.
- Schneider, F., and Moebius, K. (1963) Report: the evaluation of electron resonance spectra of organic radicals [in German], Zeitschr. Naturforsch. B, 18, 1111-1119.
- Möbius, K., and Plato, M. (1967) EPR-investigation of dissolved free-radical ions of non-alternating hydrocarbons [in German], Zeitschr. Naturforsch. A, 22, 929-939, https://doi.org/10.1515/zna-1967-0612.
- Möbius, K., and Dinse, K.-P. (1972) ENDOR of organic radicals in solution, Chimia, 26, 461, https://doi.org/10.2533/chimia.1972.461.
- Feher, G. (1956) Observation of nuclear magnetic resonances via the electron spin resonance line, Phys. Rev., 103, 834, https://doi.org/10.1103/PhysRev.103.834.
- Hyde, J. S., and Maki, A. H. (1964) ENDOR of a free radical in solution, J. Chem. Phys., 40, 3117-3118, https://doi.org/10.1063/1.1724957.
- Hyde, J. S. (1965) ENDOR of free radicals in solution, J. Chem. Phys., 43, 1806-1818, https://doi.org/10.1063/1.1697013.
- Möbius, K., Van Willigen, H., and Maki, A. H. (1971) ENDOR study of pentaphenylcyclopentadienyl radicals in solution. Lifting of orbital degeneracy by methyl substitution, Mol. Phys., 20, 289-304, https://doi.org/10.1080/00268977100100271.
- Möbius, K., and Biehl, R. (1979) Electron-nuclear-nuclear TRIPLE resonance of radicals in solutions, in Multiple Electron Resonance Spectroscopy (Dorio, M. M., and Freed, J. H., eds) Springer, pp. 475-507, https://doi.org/10.1007/978-1-4684-3441-5_14.
- Biehl, R., Moebius, K., O'Connor, S.E., Walter, R. I., and Zimmermann, H. (1979) Evaluation and assignment of proton and nitrogen hyperfine coupling constants in the free-radical 1-picryl-2, 2-diphenylhydrazyl. An NMR, electron-nuclear double resonance, and electron-nuclear-nuclear triple resonance study, J. Phys. Chem., 83, 3449-3456, https://doi.org/10.1021/j100489a027.
- Haindl, E., and Möbius, K. (1985) A 94 GHz EPR spectrometer with Fabry-Perot resonator, Zeitschr. Naturforsch. A, 40, 169-172, https://doi.org/10.1515/zna-1985-0211.
- Box, H.C., Budzinski, E. E., and Potter, W. (1971) Effects of ionizing radiation on potassium hydrogen malonate, J. Chem. Phys., 55, 315-319, https://doi.org/10.1063/1.1675523.
- Гринберг О., Дубинский А., Шувалов В., Оранский Л., Курочкин В., Лебедев Я. (1976) Субмиллиметровая спектроскопия ЭПР свободных радикалов, Докл. Акад. Наук СССР, 230, 884-887.
- Galkin, A. A., Grinberg, O. Y., Dubinskii, A. A., Kabdin, N. N., Krymov, V. N., Kurochkin, V. I., Lebedev, Y. S., Oranskii, L. G., and Shuvalov, V. F. (1977) EPR spectrometer in 2-mm range for chemical-research, Instr. Exp. Tech., 20, 1229-1233.
- Weber, R. T., Disselhorst, J., Prevo, L. J., Schmidt, J., and Wenckebach, W. T. H. (1989) Electron spin-echo spectroscopy at 95 GHz, J. Magn. Reson., 81, 129-144, https://doi.org/10.1016/0022-2364(89)90272-2.
- Prisner, T. F., Un, S., and Griffin, R. G. (1992) Pulsed ESR at 140 GHz, Isr. J. Chem., 32, 357-363, https://doi.org/10.1002/ijch.199200042.
- Lynch, W. B., Earle, K. A., and Freed, J. H. (1988) 1-mm wave ESR spectrometer, Rev. Sci. Instrum., 59, 1345-1351, https://doi.org/10.1063/1.1139720.
- Hoff, A. J., and Möbius, K. (1978) Nitrogen electron nuclear double resonance and proton triple resonance experiments on the bacteriochlorophyll cation in solution, Proc. Natl. Acad. Sci. USA, 75, 2296-2300, https://doi.org/10.1073/pnas.75.5.2296.
- Lendzian, F., Lubitz, W., Scheer, H., Hoff, A. J., Plato, M., Tränkle, E., and Möbius, K. (1988) ESR, ENDOR and TRIPLE resonance studies of the primary donor radical cation P960+ in the photosynthetic bacterium Rhodopseudomonas viridis, Chem. Phys. Lett., 148, 377-385, https://doi.org/10.1016/0009-2614(88)87191-4.
- Gorka, M., Cherepanov, D. A., Semenov, A. Y., and Golbeck, J. H. (2020) Control of electron transfer by protein dynamics in photosynthetic reaction centers, Crit. Rev. Biochem. Mol. Biol., 55, 425-468, https://doi.org/10.1080/10409238.2020.1810623.
- Prisner, T. F., Rohrer, M., and Möbius, K. (1994) Pulsed 95 GHz high-field EPR heterodyne spectrometer with high spectral and time resolution, Appl. Magn. Reson., 7, 167-183, https://doi.org/10.1007/BF03162610.
- Savitsky, A., Gopta, O., Mamedov, M., Golbeck, J. H., Tikhonov, A., Möbius, K., and Semenov, A. (2010) Alteration of the axial met ligand to electron acceptor A0 in photosystem I: effect on the generation of P700 + A1 - radical pairs as studied by W-band transient EPR, Appl. Magn. Reson., 37, 85-102, https://doi.org/10.1007/s00723-009-0052-0.
- Dashdorj, N., Xu, W., Cohen, R. O., Golbeck, J. H., and Savikhin, S. (2005) Asymmetric electron transfer in cyanobacterial photosystem I: charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0, Biophys. J., 88, 1238-1249, https://doi.org/10.1529/biophysj.104.050963.
- Cohen, R. O., Shen, G., Golbeck, J. H., Xu, W., Chitnis, P. R., Valieva, A. I., van der Est, A., Pushkar, Y., and Stehlik, D. (2004) Evidence for asymmetric electron transfer in cyanobacterial photosystem I: analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0, Biochemistry, 43, 4741-4754, https://doi.org/10.1021/bi035633f.
- Salikhov, K. M., Pushkar, Y. N., Golbeck, J. H., and Stehlik, D. (2003) Interpretation of multifrequency transient EPR spectra of the P700 + A0 QK - state in photosystem I complexes with a sequential correlated radical pair model: wild type versus A0 mutants, Appl. Magn. Reson., 24, 467-482, https://doi.org/10.1007/BF03166949.
- Zech, S. G., Hofbauer, W., Kamlowski, A., Fromme, P., Stehlik, D., Lubitz, W., and Bittl, R. (2000) A structural model for the charge separated state in photosystem I from the orientation of the magnetic interaction tensors, J. Phys. Chem. B, 104, 9728-9739, https://doi.org/10.1021/jp002125w.
- Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W., and Krauß, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution, Nature, 411, 909-917, https://doi.org/10.1038/35082000.
- Lubitz, W. (2006) EPR studies of the primary electron donor P700 in photosystem, in Photosystem I. Advances in Photosynthesis and Respiration (Golbeck, J. H., ed) Vol. 24, Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-4256-0_17.
- Plato, M., Krauß, N., Fromme, P., and Lubitz, W. (2003) Molecular orbital study of the primary electron donor P700 of photosystem I based on a recent X-ray single crystal structure analysis, Chem. Phys., 294, 483-499, https://doi.org/10.1016/S0301-0104(03)00378-1.
- Mula, S., Savitsky, A., Möbius, K., Lubitz, W., Golbeck, J. H., Mamedov, M. D., Semenov, A. Y., and van der Est, A. (2012) Incorporation of a high potential quinone reveals that electron transfer in photosystem I becomes highly asymmetric at low temperature, Photochem. Photobiol. Sci., 11, 946-956, https://doi.org/10.1039/c2pp05340c.
- Sukhanov, A. A., Mamedov, M. D., Möbius, K., Semenov, A. Y., and Salikhov, K. M. (2018) The decrease of the ESEEM frequency of P700 + A1 - ion-radical pair in photosystem i embedded in trehalose glassy matrix at room temperature can be explained by acceleration of spin-lattice relaxation, Appl. Magn. Reson., 49, 1011-1025, https://doi.org/10.1007/s00723-018-1017-y.
- Malferrari, M., Savitsky, A., Mamedov, M. D., Milanovsky, G. E., Lubitz, W., Möbius, K., Semenov, A. Y., and Venturoli, G. (2016) Trehalose matrix effects on charge-recombination kinetics in photosystem I of oxygenic photosynthesis at different dehydration levels, Biochim. Biophys. Acta, 1857, 1440-1454, https://doi.org/10.1016/j.bbabio.2016.05.001.
- Shelaev, I., Gorka, M., Savitsky, A., Kurashov, V., Mamedov, M., Gostev, F., Möbius, K., Nadtochenko, V., Golbeck, J., and Semenov, A. (2017) Effect of dehydrated trehalose matrix on the kinetics of forward electron transfer reactions in photosystem I, Zeitschr. Phys. Chem., 231, 325-345, https://doi.org/10.1515/zpch-2016-0860.
- Milanovsky, G., Gopta, O., Petrova, A., Mamedov, M., Gorka, M., Cherepanov, D., Golbeck, J. H., and Semenov, A. (2019) Multiple pathways of charge recombination revealed by the temperature dependence of electron transfer kinetics in cyanobacterial photosystem I, Biochim Biophys Acta Bioenerg., 1860, 601-610, https://doi.org/10.1016/j.bbabio.2019.06.008.
Дополнительные файлы


