MULTIFUNCTIONAL SFPQ PROTEIN: ROLE IN DOUBLE-STRANDED DNA BREAK REPAIR

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The SFPQ (Splicing Factor Proline and Glutamine rich) protein, initially discovered as a splicing factor, is a multifunctional nuclear protein that participates in various cellular processes. Its main partner in the cell is the NONO (Non-POU domain-containing octamer-binding protein) protein. SFPQ forms with NONO a heterodimer, which is an important component of subnuclear compartments called paraspeckles and located near such nuclear structures as splicing speckles. However, SFPQ can participate in some cellular processes independently, so it is SFPQ, but not NONO, that is apparently necessary for cell viability. There is a lot of data on the involvement of SFPQ in the repair of double-stranded DNA breaks, yet the precise mechanism of its involvement in this important cellular process remains unclear. In this review, we have tried to summarize and systematize the existing data on the role of SFPQ and its complex with NONO in the repair of double-stranded DNA breaks.

Sobre autores

Yu. Agapkina

Faculty of Chemistry, Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

M. Silkina

Faculty of Chemistry, Lomonosov Moscow State University

Moscow, Russia

T. Kikhai

Faculty of Chemistry, Lomonosov Moscow State University

Email: kih.t1996@yandex.ru
Moscow, Russia

M. Gottikh

Faculty of Chemistry, Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: gottikh@belozersky.msu.ru
Moscow, Russia; Moscow, Russia

Bibliografia

  1. Thandapani, P., O'Connor, T. R., Bailey, T. L., and Richard, S. (2013) Defining the RGG/RG motif, Mol. Cell, 50, 613-623, https://doi.org/10.1016/j.molcel.2013.05.021.
  2. Rosonina, E., Ip, J. Y., Calarco, J. A., Bakowski, M. A., Emili, A., McCracken, S., Tucker, P., Ingles, C. J., and Blencowe, B. J. (2005) Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo, Mol. Cell. Biol., 25, 6734-6746, https://doi.org/10.1128/MCB.25.15.6734-6746.2005.
  3. Knott, G. J., Bond, C. S., and Fox, A. H. (2016) The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold, Nucleic Acids Res., 44, 3989-4004, https://doi.org/10.1093/nar/gkw271.
  4. Niu, X., Zhang, L., Wu, Y., Zong, Z., Wang, B., Liu, J., et al. (2023) Biomolecular condensates: formation mechanisms, biological functions, and therapeutic targets, MedComm., 4, e223, https://doi.org/10.1002/mco2.223.
  5. McCluggage, F., and Fox, A. H. (2021) Paraspeckle nuclear condensates: global sensors of cell stress? Bioessays, 43, e2000245, https://doi.org/10.1002/bies.202000245.
  6. Marshall, A. C., Cummins, J., Kobelke, S., Zhu, T., Widagdo, J., Anggono, V., Hyman, A., Fox, A. H., Bond, C. S., and Lee, M. (2023) Different low-complexity regions of SFPQ play distinct roles in the formation of biomolecular condensates, J. Mol. Biol., 435, 168364, https://doi.org/10.1016/j.jmb.2023.168364.
  7. Heyd, E., and Lynch, K. W. (2011) PSF controls expression of histone variants and cellular viability in thymocytes, Biochem. Biophys. Res. Commun., 414, 743-749, https://doi.org/10.1016/j.bbrc.2011.09.149.
  8. Melton, A. A., Jackson, J., Wang, J., and Lynch, K. W. (2007) Combinatorial control of signal-induced exon repression by hnRNP L and PSF, Mol. Cell. Biol., 27, 6972-6984, https://doi.org/10.1128/MCB.00419-07.
  9. Ke, Y. D., Dramiga, J., Schutz, U., Kril, J. J., Ittner, L. M., Schroder, H., and Gotz, J. (2012) Tau-mediated nuclear depletion and cytoplasmic accumulation of SFPQ in Alzheimer's and Pick's disease, PLoS One, 7, e35678, https://doi.org/10.1371/journal.pone.0035678.
  10. Stamova, B.S., Tian, Y., Nordahl, C. W., Shen, M. D., Rogers, S., Amaral, D. G., and Sharp, F. R. (2013) Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders, Mol. Autism, 4, 30, https://doi.org/10.1186/2040-2392-4-30.
  11. Jiang, F. N., He, H. C., Zhang, Y.Q., Yang, D. L., Huang, J. H., Zhu, Y. X., Mo, R. J., Chen, G., Yang, S. B., Chen, Y. R., Zhong, W. D., and Zhou, W. L. (2013) An integrative proteomics and interaction network-based classifier for prostate cancer diagnosis, PLoS One, 8, e63941, https://doi.org/10.1371/journal.pone.0063941.
  12. Gozani, O., Patton, J. G., and Reed, R. (1994) A novel set of spliceosome-associated proteins and the essential splicing factor PSF bind stably to pre-mRNA prior to catalytic step II of the splicing reaction, EMBO J., 13, 3356-3367, https://doi.org/10.1002/j.1460-2075.1994.tb06638.x.
  13. Dong, X., Sweet, J., Challis, J. R., Brown, T., and Lye, S. J. (2007) Transcriptional activity of androgen receptor is modulated by two RNA splicing factors, PSF and p54nrb, Mol. Cell. Biol., 27, 4863-4875, https://doi.org/10.1128/MCB.02144-06.
  14. Lim, Y. W., James, D., Huang, J., and Lee, M. (2020) The emerging role of the RNA-binding protein SFPQ in neuronal function and neurodegeneration, Int. J. Mol. Sci., 21, 7151, https://doi.org/10.3390/ijms21197151.
  15. Kikhai, T., Agapkina, Y., Silkina, M., Prikazchikova, T., and Gottikh, M. (2024) The cellular SFPQ protein as a positive factor in the HIV-1 integration, Biochimie, 222, 9-17, https://doi.org/10.1016/j.biochi.2024.02.002.
  16. Shadrina, O. A., Kikhay, T. F., Agapkina, Y. Y., and Gottikh, M. B. (2022) SFPQ and NONO proteins and long non-coding NEAT1 RNA: cellular functions and role in the HIV-1 life cycle, Mol. Biol., 56, 196-209, https://doi.org/10.31857/S0026898422020161.
  17. Milcamps, R., and Michiels, T. (2024) Involvement of paraspeckle components in viral infections, Nucleus, 15, 2350178, https://doi.org/10.1080/19491034.2024.2350178.
  18. Yu, D., Huang, C. J., and Tucker, H. O. (2024) Established and evolving roles of the Multifunctional non-POU domain-containing octamer-binding protein (NonO) and splicing factor proline- and glutamine-rich (SFPQ), J. Dev. Biol., 12, 3, https://doi.org/10.3390/jdb12010003.
  19. Takeiwa, T., Ikeda, K., Horie, K., and Inoue, S. (2024) Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer, RNA Biol., 21, 1-17, https://doi.org/10.1080/15476286.2024.2332855.
  20. Harrison, J. C., and Haber, J. E. (2006) Surviving the breakup: the DNA damage checkpoint, Annu. Rev. Genet., 40, 209-235, https://doi.org/10.1146/annurev.genet.40.051206.105231.
  21. Khanna, A. (2015) DNA damage in cancer therapeutics: a boon or a curse? Cancer Res., 75, 2133-2138, https://doi.org/10.1158/0008-5472.CAN-14-3247.
  22. Iyama, T., and Wilson, D. M. 3rd. (2013) DNA repair mechanisms in dividing and non-dividing cells, DNA Repair (Amst), 12, 620-636, https://doi.org/10.1016/j.dnarep.2013.04.015.
  23. Wyman, C., and Kanaar, R. (2006) DNA double-strand break repair: all's well that ends well, Annu. Rev. Genet., 40, 363-383, https://doi.org/10.1146/annurev.genet.40.110405.090451.
  24. Lieber, M. R. (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway, Annu. Rev. Biochem., 79, 181-211, https://doi.org/10.1146/annurev.biochem.052308.093131.
  25. Scully, R., Panday, A., Elango, R., and Willis, N. A. (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells, Nat. Rev. Mol. Cell Biol., 20, 698-714, https://doi.org/10.1038/s41580-019-0152-0.
  26. Shiloh, Y. (2006) The ATM-mediated DNA-damage response: taking shape, Trends Biochem. Sci., 31, 402-410, https://doi.org/10.1016/j.tibs.2006.05.004.
  27. Weterings, E., and Chen, D. J. (2007) DNA-dependent protein kinase in nonhomologous end joining: a lock with multiple keys? J. Cell Biol., 179, 183-186, https://doi.org/10.1083/jcb.200705106.
  28. Cimprich, K.A., and Cortez, D. (2008) ATR: an essential regulator of genome integrity, Nat. Rev. Mol. Cell Biol., 9, 616-627, https://doi.org/10.1038/nrm2450.
  29. Falck, J., Coates, J., and Jackson, S. P. (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage, Nature, 434, 605-611, https://doi.org/10.1038/nature03442.
  30. Stucki, M., and Jackson, S. P. (2006) gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes, DNA Repair, 5, 534-543, https://doi.org/10.1016/j.dnarep.2006.01.012.
  31. Graham, T. G., Walter, J. C., and Loparo, J. J. (2016) Two-stage synapsis of DNA ends during non-homologous end joining, Mol. Cell, 61, 850-858, https://doi.org/10.1016/j.molcel.2016.02.010.
  32. Goodarzi, A. A., and Jeggo, P. A. (2012) The heterochromatic barrier to DNA double strand break repair: how to get the entry visa, Int. J. Mol. Sci., 13, 11844-11860, https://doi.org/10.3390/ijms130911844.
  33. Syed, A., and Tainer, J. A. (2018) The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair, Annu. Rev. Biochem., 87, 263-294, https://doi.org/10.1146/annurev-biochem-062917-012415.
  34. Daley, J. M., Kwon, Y., Niu, H., and Sung, P. (2013) Investigations of homologous recombination pathways and their regulation, Yale J. Biol. Med., 86, 453-461.
  35. Alemasova, E. E., and Lavrik, O. I. (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins, Nucleic Acids Res., 47, 3811-3827, https://doi.org/10.1093/nar/gkz120.
  36. Polo, S. E., and Jackson, S. P. (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications, Genes Dev., 25, 409-433, https://doi.org/10.1101/gad.2021311.
  37. Dantzer, F., de La Rubia, G., Menissier-De Murcia, J., Hostomsky, Z., de Murcia, G., and Schreiber, V. (2000) Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1, Biochemistry, 39, 7559-7569, https://doi.org/10.1021/bi000442k.
  38. Spiegel, J. O., Van Houten, B., and Durrant, J. D. (2021) PARP1: structural insights and pharmacological targets for inhibition, DNA Repair (Amst), 103, 103125, https://doi.org/10.1016/j.dnarep.2021.103125.
  39. De Vos, M., Schreiber, V., and Dantzer, F. (2012) The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art, Biochem. Pharmacol., 84, 137-146, https://doi.org/10.1016/j.bcp.2012.03.018.
  40. Bladen, C. L., Udayakumar, D., Takeda, Y., and Dynan, W. S. (2005) Identification of the polypyrimidine tract binding protein-associated splicing factor-p54(nrb) complex as a candidate DNA double-strand break rejoining factor, J. Biol. Chem., 280, 5205-5210, https://doi.org/10.1074/jbc.M412758200.
  41. Rajesh, C., Baker, D. K., Pierce, A. J., and Pittman, D. L. (2011) The splicing-factor related protein SFPQ/PSF interacts with RAD51D and is necessary for homology-directed repair and sister chromatid cohesion, Nucleic Acids Res., 39, 132-145, https://doi.org/10.1093/nar/gkq738.
  42. Smiraldo, P. G., Gruver, A. M., Osborn, J. C., and Pittman, D. L. (2005) Extensive chromosomal instability in Rad51d-deficient mouse cells, Cancer Res., 65, 2089-2096, https://doi.org/10.1158/0008-5472.CAN-04-2079.
  43. Godthelp, B. C., Wiegant, W. W., van Duijn-Goedhart, A., Scharer, O. D., van Buul, P. P., Kanaar, R., and Zdzienicka, M. Z. (2002) Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability, Nucleic Acids Res., 30, 2172-2182, https://doi.org/10.1093/nar/30.10.2172.
  44. Salton, M., Lerenthal, Y., Wang, S. Y., Chen, D. J., and Shiloh, Y. (2010) Involvement of Matrin 3 and SFPQ/NONO in the DNA damage response, Cell Cycle, 9, 1568-1576, https://doi.org/10.4161/cc.9.8.11298.
  45. FitzGerald, J. E., Grenon, M., and Lowndes, N. F. (2009) 53BP1: function and mechanisms of focal recruitment, Biochem. Soc. Trans., 37, 897-904, https://doi.org/10.1042/BST0370897.
  46. Ha, K., Takeda, Y., and Dynan, W. S. (2011) Sequences in PSF/SFPQ mediate radioresistance and recruitment of PSF/SFPQ-containing complexes to DNA damage sites in human cells, DNA Repair (Amst), 10, 252-259, https://doi.org/10.1016/j.dnarep.2010.11.009.
  47. Morozumi, Y., Takizawa, Y., Takaku, M., and Kurumizaka, H. (2009) Human PSF binds to RAD51 and modulates its homologous-pairing and strand-exchange activities, Nucleic Acids Res., 37, 4296-4307, https://doi.org/10.1093/nar/gkp298.
  48. Udayakumar, D., and Dynan, W. S. (2015) Characterization of DNA binding and pairing activities associated with the native SFPQ-NONO DNA repair protein complex, Biochem. Biophys. Res. Commun., 463, 473-478, https://doi.org/10.1016/j.bbrc.2015.05.024.
  49. Jaafar, L., Li, Z., Li, S., and Dynan, W. S. (2017) SFPQ-NONO and XLF function separately and together to promote DNA double-strand break repair via canonical nonhomologous end joining, Nucleic Acids Res., 45, 1848-1859, https://doi.org/10.1093/nar/gkw1209.
  50. Levone, B. R., Lenzken, S. C., Antonaci, M., Maiser, A., Rapp, A., Conte, F., Reber, S., Mechtersheimer, J., Ronchi, A. E., Muhlemann, O., Leonhardt, H., Cardoso, M. C., Ruepp, M. D., and Barabino, S. M. L. (2021) FUS-dependent liquid-liquid phase separation is important for DNA repair initiation, J. Cell Biol., 220, e202008030, https://doi.org/10.1083/jcb.202008030.
  51. Morchikh, M., Cribier, A., Raffel, R., Amraoui, S., Cau, J., Severac, D., Dubois, E., Schwartz, O., Bennasser, Y., and Benkirane, M. (2017) HEXIM1 and NEAT1 long non-coding RNA form a multi-subunit complex that regulates DNA-mediated innate immune response, Mol. Cell, 67, 387-399.e5, https://doi.org/10.1016/j.molcel.2017.06.020.
  52. Mastrocola, A. S., Kim, S. H., Trinh, A. T., Rodenkirch, L. A., and Tibbetts, R. S. (2013) The RNA-binding protein fused in sarcoma (FUS) functions downstream of poly(ADP-ribose) polymerase (PARP) in response to DNA damage, J. Biol. Chem., 288, 24731-24741, https://doi.org/10.1074/jbc.M113.497974.
  53. Aleksandrov, R., Dotchev, A., Poser, I., Krastev, D., Georgiev, G., Panova, G., Babukov, Y., Danovski, G., Dyankova, T., Hubatsch, L., Ivanova, A., Atemin, A., Nedelcheva-Veleva, M. N., Hasse, S., Sarov, M., Buchholz, F., Hyman, A. A., Grill, S. W., and Stoynov, S. S. (2018) Protein dynamics in complex DNA lesions, Mol. Cell, 69, 1046-1061.e6, https://doi.org/10.1016/j.molcel.2018.02.016.
  54. Wang, J. C. (2002) Cellular roles of DNA topoisomerases: a molecular perspective, Nat. Rev. Mol. Cell Biol., 3, 430-440, https://doi.org/10.1038/nrm831.
  55. Morimoto, S., Tsuda, M., Bunch, H., Sasanuma, H., Austin, C., and Takeda, S. (2019) Type II DNA topoisomerases cause spontaneous double-strand breaks in genomic DNA, Genes (Basel), 10, 868, https://doi.org/10.3390/genes10110868.
  56. Straub, T., Grue, P., Uhse, A., Lisby, M., Knudsen, B. R., Tange, T. O., Westergaard, O., and Boege, F. (1998) The RNA-splicing factor PSF/p54 controls DNA-topoisomerase I activity by a direct interaction, J. Biol. Chem., 273, 26261-26266, https://doi.org/10.1074/jbc.273.41.26261.
  57. Kawano, S., Miyaji, M., Ichiyasu, S., Tsutsui, K. M., and Tsutsui, K. (2010) Regulation of DNA topoisomerase IIbeta through RNA-dependent association with heterogeneous nuclear ribonucleoprotein U (hnRNP U), J. Biol. Chem., 285, 26451-26460, https://doi.org/10.1074/jbc.M110.112979.
  58. Mäkiniemi, M., Hillukkala, T., Tuusa, J., Reini, K., Vaara, M., Huang, D., Pospiech, H., Majuri, I., Westerling, T., Mäkelä, T. P., and Syväoja, J. E. (2001) BRCT domain-containing protein TopBP1 functions in DNA replication and damage response, J. Biol. Chem., 276, 30399-30406, https://doi.org/10.1074/jbc.M102245200.
  59. Kuhnert, A., Schmidt, U., Monajembashi, S., Franke, C., Schlott, B., Grosse, F., Greulich, K. O., Saluz, H. P., and Hanel, F. (2012) Proteomic identification of PSF and p54(nrb) as TopBP1-interacting proteins, J. Cell. Biochem., 113, 1744-1753, https://doi.org/10.1002/jcb.24045.
  60. Lin, M. Z., Marzec, K. A., Martin, J. L., and Baxter, R. C. (2014) The role of insulin-like growth factor binding protein-3 in the breast cancer cell response to DNA-damaging agents, Oncogene, 33, 85-96, https://doi.org/10.1038/onc.2012.538.
  61. De Silva, H.C., Lin, M. Z., Phillips, L., Martin, J. L., and Baxter, R. C. (2019) IGFBP-3 interacts with NONO and SFPQ in PARP-dependent DNA damage repair in triple-negative breast cancer, Cell. Mol. Life Sci., 76, 2015-2030, https://doi.org/10.1007/s00018-019-03033-4.
  62. Zhang, Y., He, Q., Hu, Z., Feng, Y., Fan, L., Tang, Z., Yuan, J., Shan, W., Li, C., Hu, X., Tanyi, J. L., Fan, Y., Huang, Q., Montone, K., Dang, C. V., and Zhang, L. (2016) Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer, Nat. Struct. Mol. Biol., 23, 522-530, https://doi.org/10.1038/nsmb.3211.
  63. Masson, J. Y., and West, S. C. (2001) The Rad51 and Dmc1 recombinases: a non-identical twin relationship, Trends Biochem. Sci., 26, 131-136, https://doi.org/10.1016/s0968-0004(00)01742-4.
  64. West, S. C. (2003) Molecular views of recombination proteins and their control, Nat. Rev. Mol. Cell Biol., 4, 435-445, https://doi.org/10.1038/nrm1127.
  65. Morozumi, Y., Ino, R., Takaku, M., Hosokawa, M., Chuma, S., and Kurumizaka, H. (2012) Human PSF concentrates DNA and stimulates duplex capture in DMC1-mediated homologous pairing, Nucleic Acids Res., 40, 3041-3051, https://doi.org/10.1093/nar/gkr1229.
  66. Peng, D., Luo, L., Zhang, X., Wei, C., Zhang, Z., and Han, L. (2022) CircRNA: An emerging star in the progression of glioma, Biomed. Pharmacother., 151, 113150, https://doi.org/10.1016/j.biopha.2022.113150.
  67. Peng, D., Wei, C., Jing, B., Yu, R., Zhang, Z., and Han, L. (2024) A novel protein encoded by circCOPA inhibits the malignant phenotype of glioblastoma cells and increases their sensitivity to temozolomide by disrupting the NONO-SFPQ complex, Cell Death Dis., 15, 616, https://doi.org/10.1038/s41419-024-07010-z.
  68. Dianatpour, A., and Ghafouri-Fard, S. (2017) The role of long non coding RNAs in the repair of DNA double strand breaks, Int. J. Mol. Cell. Med., 6, 1-12, https://doi.org/10.22088/acadpub.BUMS.6.1.1.
  69. Wu, Z., and Wang, Y. (2017) Studies of lncRNAs in DNA double strand break repair: what is new? Oncotarget, 6, 102690-102704, https://doi.org/10.18632/oncotarget.22090.
  70. Cheng, Y., Han, R., Wang, M., Wang, S., Zhou, J., Wang, J., and Xu, H. (2025) M6A-mediated lncRNA SCIRT stability promotes NSCLC progression through binding to SFPQ and activating the PI3K/Akt pathway, Cell. Mol. Life Sci., 82, 63, https://doi.org/10.1007/s00018-025-05594-z.
  71. Fu, W., Ren, H., Shou, J., Liao, Q., Li, L., Shi, Y., Jose, P. A., Zeng, C., and Wang, W. E. (2022) Loss of NPPA-AS1 promotes heart regeneration by stabilizing SFPQ-NONO heteromer-induced DNA repair, Basic Res. Cardiol., 117, 10, https://doi.org/10.1007/s00395-022-00921-y.
  72. Sun, N., Chen, Q., Chen, H., Sun, P., Liu, Y., Song, D., Yu, D., Wang, P., Song, Y., Qin, J., Tian, K., Zhong, J., Ma, W., Xuan, H., Qian, D., Yuan, Y., Chen, T., Wang, X., Jiang, C., Cai, J., and Meng, X. (2025) A novel nuclear RNA HSDS2 scaffolding NONO/SFPQ complex modulates DNA damage repair to facilitate temozolomide resistance, Neuro Oncol., 27, 963-978, https://doi.org/10.1093/neuonc/noae272.
  73. Zhang, Y., Guan, B., Wu, Y., Du, F., Zhuang, J., Yang, Y., Guan, G., and Liu, X. (2021) LncRNAs associated with chemoradiotherapy response and prognosis in locally advanced rectal cancer, J. Inflamm. Res., 14, 6275-6292, https://doi.org/10.2147/JIR.S334096.
  74. Mehta, S., and Zhang, J. (2022) Liquid-liquid phase separation drives cellular function and dysfunction in cancer, Nat. Rev. Cancer., 22, 239-252, https://doi.org/10.1038/s41568-022-00444-7.
  75. Su, Q., Mehta, S., and Zhang, J. (2021) Liquid-liquid phase separation: orchestrating cell signaling through time and space, Mol. Cell., 81, 4137-4146, https://doi.org/10.1016/j.molcel.2021.09.010.
  76. Wang, Y. L., Zhao, W. W., Shi, J., Wan, X. B., Zheng, J., and Fan, X. J. (2023) Liquid-liquid phase separation in DNA double-strand breaks repair, Cell Death Dis., 14, 746, https://doi.org/10.1038/s41419-023-06267-0.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».