НОВЫЙ ГИБРИДНЫЙ БЕЛОК НА ОСНОВЕ DRS-СПЕЦИФИЧНОГО ВАРИАНТА TRAIL С УСИЛЕННЫМИ ПРОТИВООПУХОЛЕВЫМИ СВОЙСТВАМИ
- Авторы: Яголович А.В1, Исакова А.А1,2, Куковякина Е.В2, Юань Ц.1, Федулова А.С1, Авакянц А.В1,2, Шайтан А.К1, Долгих Д.А1,2, Кирпичников М.П1,2, Гаспарян М.Э2
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова
- Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
- Выпуск: Том 90, № 9 (2025)
- Страницы: 1365-1376
- Раздел: Статьи
- URL: https://journals.rcsi.science/0320-9725/article/view/355101
- DOI: https://doi.org/10.31857/S0320972525090087
- ID: 355101
Цитировать
Аннотация
Ключевые слова
Об авторах
А. В Яголович
Московский государственный университет имени М.В. Ломоносовабиологический факультет Москва, Россия
А. А Исакова
Московский государственный университет имени М.В. Ломоносова; Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАНбиологический факультет Москва, Россия; Москва, Россия
Е. В Куковякина
Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАНМосква, Россия
Ц. Юань
Московский государственный университет имени М.В. Ломоносовабиологический факультет Москва, Россия
А. С Федулова
Московский государственный университет имени М.В. Ломоносовабиологический факультет Москва, Россия
А. В Авакянц
Московский государственный университет имени М.В. Ломоносова; Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАНбиологический факультет Москва, Россия; Москва, Россия
А. К Шайтан
Московский государственный университет имени М.В. Ломоносовабиологический факультет Москва, Россия
Д. А Долгих
Московский государственный университет имени М.В. Ломоносова; Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАНбиологический факультет Москва, Россия; Москва, Россия
М. П Кирпичников
Московский государственный университет имени М.В. Ломоносова; Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАНбиологический факультет Москва, Россия; Москва, Россия
М. Э Гаспарян
Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: marine_gaspartan@yahoo.com
Москва, Россия
Список литературы
- Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., et al. (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand, J. Clin. Invest., 104, 155-162, https://doi.org/10.1172/JCI6926.
- Twomey, J. D., Kim, S.-R., Zhao, L., Bozza, W. P., and Zhang, B. (2015) Spatial dynamics of TRAIL death receptors in cancer cells, Drug Resist. Updates, 19, 13-21, https://doi.org/10.1016/j.drup.2015.02.001.
- Di Cristofano, F., George, A., Tajiknia, V., Chandali, M., Wu, L., et al. (2023) Therapeutic targeting of TRAIL death receptors, Biochem. Soc. Trans., 51, 57-70, https://doi.org/10.1042/BST20220098.
- Yagolovich, A. V., Gasparian, M. E., Isakova, A. A., Artykov, A. A., Dolgikh, D. A., et al. (2025) Cytokine TRAIL death receptor agonists: design strategies and clinical prospects, Russ. Chem. Rev., 94, RCR5154, https://doi.org/10.59761/RCR5154.
- Dubuisson, A., and Micheau, O. (2017) Antibodies and derivatives targeting DR4 and DR5 for cancer therapy, Antibodies, 6, 16, https://doi.org/10.3390/antib6040016.
- Gieffers, C., Kluge, M., Merz, C., Sykora, J., Thiemann, M., et al. (2013) APG350 induces superior clustering of TRAIL receptors and shows therapeutic antitumor efficacy independent of cross-linking via Fcγ receptors, Mol. Cancer Ther., 12, 2735-2747, https://doi.org/10.1158/1535-7163.MCT-13-0323.
- Kretz, A.-L., Trauzold, A., Hillenbrand, A., Knippschild, U., Henne-Bruns, D., et al. (2019) TRAILblazing strategies for cancer treatment, Cancers, 11, 456, https://doi.org/10.3390/cancers11040456.
- De Miguel, D., Lemke, J., Anel, A., Walczak, H., and Martinez-Lostao, L. (2016) Onto better TRAILs for cancer treatment, Cell Death Differ., 23, 733-747, https://doi.org/10.1038/cdd.2015.174.
- De Visser, K. E., and Joyce, J. A. (2023) The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth, Cancer Cell, 41, 374-403, https://doi.org/10.1016/j.ccell.2023.02.016.
- Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., et al. (2020) Tumor microenvironment complexity and therapeutic implications at a glance, Cell Commun. Signal., 18, 59, https://doi.org/10.1186/s12964-020-0530-4.
- De Looff, M., De Jong, S., and Kruyt, F. A. E. (2019) Multiple interactions between cancer cells and the tumor microenvironment modulate TRAIL signaling: implications for TRAIL receptor targeted therapy, Front. Immunol., 10, 1530, https://doi.org/10.3389/fimmu.2019.01530.
- Jiang, X., Wang, J., Deng, X., Xiong, F., Zhang, S., et al. (2020) The role of microenvironment in tumor angiogenesis, J. Exp. Clin. Cancer Res., 39, 204, https://doi.org/10.1186/s13046-020-01709-5.
- Liu, Z.-L., Chen, H.-H., Zheng, L.-L., Sun, L.-P., and Shi, L. (2023) Angiogenic signaling pathways and anti-angiogenic therapy for cancer, Signal Transduct. Target. Ther., 8, 198, https://doi.org/10.1038/s41392-023-01460-1.
- Liu, G., Chen, T., Ding, Z., Wang, Y., Wei, Y., et al. (2021) Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment, Cell Prolif., 54, e13009, https://doi.org/10.1111/cpr.13009.
- Mahaki, H., Nobari, S., Tanzadehpanah, H., Babaeizad, A., Kazemzadeh, G., et al. (2025) Targeting VEGF signaling for tumor microenvironment remodeling and metastasis inhibition: therapeutic strategies and insights, Biomed. Pharmacother., 186, 118023, https://doi.org/10.1016/j.biopha.2025.118023.
- Zhang, P., Yue, L., Leng, Q., Chang, C., Gan, C., et al. (2024) Targeting FGFR for cancer therapy, J. Hematol. Oncol., 17, 39, https://doi.org/10.1186/s13045-024-01558-1.
- Hu, Y., Ai, L.-S., and Zhou, L.-Q. (2021) Prognostic value of FGFR1 expression and amplification in patients with HNSCC: a systematic review and meta-analysis, PLoS One, 16, e0251202, https://doi.org/10.1371/journal.pone.0251202.
- Lian, L., Li, X.-L., Xu, M.-D., Li, X.-M., Wu, M.-Y., et al. (2019) VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer, BMC Cancer, 19, 183, https://doi.org/10.1186/s12885-019-5322-0.
- Fan, J., Huang, L., Sun, J., Qiu, Y., Zhou, J., et al. (2015) Strategy for linker selection to enhance refolding and bioactivity of VAS-TRAIL fusion protein based on inclusion body conformation and activity, J. Biotechnol., 209, 16-22, https://doi.org/10.1016/j.jbiotec.2015.06.383.
- Rozga, P., Kloska, D., Pawlak, S., Teska-Kaminska, M., Galazka, M., et al. (2020) Novel engineered TRAIL-based chimeric protein strongly inhibits tumor growth and bypasses TRAIL resistance, Int. J. Cancer, 147, 1117-1130, https://doi.org/10.1002/ijc.32845.
- Yagolovich, A. V., Artykov, A. A., Isakova, A. A., Vorontsova, Y. V., Dolgikh, D. A., et al. (2022) Optimized heterologous expression and efficient purification of a new TRAIL-based antitumor fusion protein SRH-DR5-B with dual VEGFR2 and DR5 receptor specificity, Int. J. Mol. Sci., 23, 5860, https://doi.org/10.3390/ijms23115860.
- Yagolovich, A. V., Isakova, A. A., Artykov, A. A., Vorontsova, Y. V., Mazur, D. V., et al. (2022) DR5-selective TRAIL variant DR5-B functionalized with tumor-penetrating iRGD peptide for enhanced antitumor activity against glioblastoma, Int. J. Mol. Sci., 23, 12687, https://doi.org/10.3390/ijms232012687.
- Isakova, A. A., Artykov, A. A., Plotnikova, E. A., Trunova, G. V., Khokhlova, V. A., et al. (2024) Dual targeting of DR5 and VEGFR2 molecular pathways by multivalent fusion protein significantly suppresses tumor growth and angiogenesis, Int. J. Biol. Macromol., 255, 128096, https://doi.org/10.1016/j.ijbiomac.2023.128096.
- Brünker, P., Wartha, K., Friess, T., Grau-Richards, S., Waldhauser, L., et al. (2016) RG7386, a novel tetravalent FAP-DR5 antibody, effectively triggers FAP-dependent, avidity-driven DR5 hyperclustering and tumor cell apoptosis, Mol. Cancer Ther., 15, 946-957, https://doi.org/10.1158/1535-7163.MCT-15-0647.
- Yagolovich, A. V., Artykov, A. A., Dolgikh, D. A., Kirpichnikov, M. P., and Gasparian, M. E. (2019) A new efficient method for production of recombinant antitumor cytokine TRAIL and its receptor selective variant DR5-B, Biochemistry (Moscow), 84, 627-636, https://doi.org/10.1134/S0006297919060051.
- Wu, J., Chen, L., Chen, L., Fan, L., Wang, Z., et al. (2020) The discovery of potent and stable short peptide FGFR1 antagonist for cancer therapy, Eur. J. Pharm. Sci., 143, 105179, https://doi.org/10.1016/j.ejps.2019.105179.
- Zhang, Y., He, B., Liu, K., Ning, L., Luo, D., et al. (2017) A novel peptide specifically binding to VEGF receptor suppresses angiogenesis in vitro and in vivo, Signal Transduct. Target. Ther., 2, 17010, https://doi.org/10.1038/sigtrans.2017.10.
- Hymowitz, S. G., Christinger, H. W., Fuh, G., Ultsch, M., O’Connell, M., et al. (1999) Triggering cell death, Mol. Cell, 4, 563-571, https://doi.org/10.1016/S1097-2765(00)80207-5.
- Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., et al. (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1-2, 19-25, https://doi.org/10.1016/j.softx.2015.06.001.
- Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., and Moreno, E. (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS, J. Chem. Theory Comput., 17, 6281-6291, https://doi.org/10.1021/acs.jctc.1c00645.
- Gasparian, M. E., Elistratov, P. A., Drize, N. I., Nifontova, I. N., Dolgikh, D. A., et al. (2009) Overexpression in Escherichia coli and purification of human fibroblast growth factor (FGF-2), Biochemistry (Moscow), 74, 221-225, https://doi.org/10.1134/S000629790902014X.
- Gasparian, M. E., Chernyak, B. V., Dolgikh, D. A., Yagolovich, A. V., Popova, E. N., et al. (2009) Generation of new TRAIL mutants DR5-A and DR5-B with improved selectivity to death receptor 5, Apoptosis, 14, 778-787, https://doi.org/10.1007/s10495-009-0349-3.
- Wang, Y., Qian, X., Wang, Y., Yu, C., Feng, L., et al. (2025) Turn TRAIL into better anticancer therapeutic through TRAIL fusion proteins, Cancer Med., 14, e70517, https://doi.org/10.1002/cam4.70517.
- Goldmacher, V. S., Gershteyn, I. M., and Kovtun, Y. (2024) Beyond ADCs: harnessing bispecific antibodies to directly induce apoptosis for targeted tumor eradication, Antib. Ther., 7, 351-360, https://doi.org/10.1093/abt/bae029.
- Gasparian, M. E., Bychkov, M. L., Yagolovich, A. V., Dolgikh, D. A., and Kirpichnikov, M. P. (2015) Mutations enhancing selectivity of antitumor cytokine TRAIL to DR5 receptor increase its cytotoxicity against tumor cells, Biochemistry (Moscow), 80, 1080-1091, https://doi.org/10.1134/S0006297915080143.
Дополнительные файлы


