IP3-РЕЦЕПТОРЫ ОПОСРЕДУЮТ КАЛЬЦИЕВУЮ И АНАБОЛИЧЕСКУЮ СИГНАЛИЗАЦИЮ, СВЯЗАННУЮ С АТРОФИЕЙ МЫШЦ ВО ВРЕМЯ ТРЁХДНЕВНОЙ РАЗГРУЗКИ ЗАДНИХ КОНЕЧНОСТЕЙ У КРЫС
- Авторы: Зарипова К.А1, Боков Р.О1, Шарло К.А1, Белова С.П1, Немировская Т.Л1
-
Учреждения:
- Институт медико-биологических проблем РАН
- Выпуск: Том 90, № 9 (2025)
- Страницы: 1297-1310
- Раздел: Статьи
- URL: https://journals.rcsi.science/0320-9725/article/view/355096
- DOI: https://doi.org/10.31857/S0320972525090039
- ID: 355096
Цитировать
Аннотация
Ключевые слова
Об авторах
К. А Зарипова
Институт медико-биологических проблем РАНМосква, Россия
Р. О Боков
Институт медико-биологических проблем РАНМосква, Россия
К. А Шарло
Институт медико-биологических проблем РАН
Email: sharlokris@gmail.com
Москва, Россия
С. П Белова
Институт медико-биологических проблем РАН
Email: swetbell@mail.ru
Москва, Россия
Т. Л Немировская
Институт медико-биологических проблем РАН
Email: nemirovskaya@bk.ru
Москва, Россия
Список литературы
- Caiozzo, V. J., Baker, M. J., Herrick, R. E., Tao, M., and Baldwin, K. M. (1994) Effect of spaceflight on skeletal muscle: mechanical properties and myosin isoform content of a slow muscle, J. Appl. Physiol., 76, 1764-1773, https://doi.org/10.1152/jappl.1994.76.4.1764.
- Convertino, V. A., Bloomfield, S. A., and Greenleaf, J. E. (1997) An overview of the issues: physiological effects of bed rest and restricted physical activity, Med. Sci. Sports Exerc., 29, 187-190, https://doi.org/10.1097/00005768-199702000-00004.
- Shenkman, B. S., and Nemirovskaya, T. L. (2008) Calcium-dependent signaling mechanisms and soleus fiber remodeling under gravitational unloading, J. Muscle Res. Cell Motil., 29, 221-230, https://doi.org/10.1007/s10974-008-9164-7.
- Ingalls, C. P., Warren, G. L., and Armstrong, R. B. (1999) Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading, J. Appl. Physiol., 87, 386-390, https://doi.org/10.1152/jappl.1999.87.1.386.
- Yang, H., Wang, H., Pan, F., Guo, Y., Cao, L., Yan, W., and Gao, Y. (2023) New findings: hindlimb unloading causes nucleocytoplasmic Ca2+ overload and DNA damage in skeletal muscle, Cells, 12, 1077, https://doi.org/10.3390/cells12071077.
- Chibalin, A. V., Benziane, B., Zakyrjanova, G. F., Kravtsova, V. V., and Krivoi, I.I. (2018) Early endplate remodeling and skeletal muscle signaling events following rat hindlimb suspension, J. Cell. Physiol., 233, 6329-6336, https://doi.org/10.1002/jcp.26594.
- Araya, R., Liberona, J. L., Cardenas, J. C., Riveros, N., Estrada, M., Powell, J. A., Carrasco, M. A., and Jaimovich, E. (2003) Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells, J. Gen. Physiol., 121, 3-16, https://doi.org/10.1085/jgp.20028671.
- Cardenas, C., Liberona, J. L., Molgo, J., Colasante, C., Mignery, G. A., and Jaimovich, E. (2005) Nuclear inositol 1,4,5-trisphosphate receptors regulate local Ca2+ transients and modulate cAMP response element binding protein phosphorylation, J. Cell Sci., 118, 3131-3140, https://doi.org/10.1242/jcs.02446.
- Decuypere, J. P., Monaco, G., Missiaen, L., De Smedt, H., Parys, J. B., and Butlynck, G. (2011) IP3 Receptors, mitochondria, and Ca2+ signaling: implications for aging, J. Aging Res., 2011, 920178, https://doi.org/10.4061/2011/920178.
- Whyte-Fagundes, P., and Zoidl, G. (2018) Mechanisms of pannexin channel gating and regulation, Biochim. Biophys. Acta Biomembr., 1860, 65-71, https://doi.org/10.1016/j.bbamem.2017.07.009.
- Valladares, D., Utreras-Mendoza, Y., Campos, C., Morales, C., Diaz-Vegas, A., Contreras-Ferrat, A., Westermeier, F., Jaimovich, E., Marchi, S., Pinton, P., and Lavandero, S. (2018) IP3 receptor blockade restores autophagy and mitochondrial function in skeletal muscle fibers of dystrophic mice, Biochim. Biophys. Acta, 1864, 3685-3695, https://doi.org/10.1016/j.bbadis.2018.08.042.
- Jaimovich, E., Reyes, R., Liberona, J. L., and Powell, J. A. (2000) IP3 receptors, IP3 transients, and nucleus-associated Ca2+ signals in cultured skeletal muscle, Am. J. Physiol. Cell Physiol., 278, C998-C1010, https://doi.org/10.1152/ajpcell.2000.278.5.C998.
- Chin, E. R. (2010) Intracellular Ca2+ signaling in skeletal muscle: decoding a complex message, Exerc. Sport Sci. Rev., 38, 76-85, https://doi.org/10.1097/JES.0b013e318d4495d2.
- Casas, M., Buvinic, S., and Jaimovich, E. (2014) ATP signaling in skeletal muscle: from fiber plasticity to regulation of metabolism, Exerc. Sport Sci. Rev., 42, 110-116, https://doi.org/10.1249/JES.000000000000017.
- Belova, S. P., Lomonosova, Y. N., Shenkman, B. S., and Nemirovskaya, T. L. (2015) The blockade of dihydropyridine channels prevents an increase in μ-calpain level under m. soleus unloading, Dokl. Biochem. Biophys., 460, 1-3, https://doi.org/10.1134/S1607672915010019.
- Sharlo, K. A., Lvova, I. D., Tyganov, S. A., Zaripova, K. A., Belova, S. P., Kostrominova, T. Y., Shenkman, B. S., and Nemirovskaya, T. L. (2023) The effect of SERCA activation on functional characteristics and signaling of rat soleus muscle upon 7 days of unloading, Biomolecules, 13, 1354, https://doi.org/10.3390/biom13091354.
- Belova, S. P., Mochalova, E. P., Kostrominova, T. Y., Shenkman, B. S., and Nemirovskaya, T. L. (2020) P38α-MAPK signaling inhibition attenuates soleus atrophy during early stages of muscle unloading, Int. J. Mol. Sci., 21, https://doi.org/10.3390/ijms21082756.
- Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., and Altman, D. G. (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research, PLoS Biol., 8, e1000412, https://doi.org/10.1371/journal.pbio.1000412.
- Morey-Holton, E., Globus, R. K., Kaplansky, A., and Durnova, G. (2005) The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data, Adv. Space Biol. Med., 10, 7-40, https://doi.org/10.1016/s1569-2574(05)10002-1.
- Lin, L., Zhao, X., Yan, W., and Qi, W. (2012) Influence of Oral intervention on mouse airway epithelium reactions in vivo and in vitro, Ann. Allergy Asthma Immunol., 108, 103-112, https://doi.org/10.1016/j.anal.2011.09.013.
- Belova, S. P., Zaripova, K., Sharlo, K., Kostrominova, T. Y., Shenkman, B. S., and Nemirovskaya, T. L. (2022) Metformin attenuates an increase of calcium-dependent and ubiquitin-proteasome markers in unloaded muscle, J. Appl. Physiol., 133, 1149-1163, https://doi.org/10.1152/japplphysiol.00415.2022.
- Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 29, e45, https://doi.org/10.1093/nar/29.9.e45.
- Thomason, D. B., and Booth, F. W. (1990) Atrophy of the soleus muscle by hindlimb unwelghting, J. Appl. Physiol., 68, 1-12, https://doi.org/10.1152/jappl.1990.68.1.1.
- Martinez-Canton, M., Gallego-Selles, A., Galvan-Alvarez, V., Garcia-Gonzalez, E., Garcia-Perez, G., Santana, A., Martin-Rincon, M., and Calbet, J. A. L. (2024) CaMKII protein expression and phosphorylation in human skeletal muscle by immunoblotting: Isoform specificity, Free Radic. Biol. Med., 224, 182-189, https://doi.org/10.1016/j.freeradbiomed.2024.08.030.
- Ma, H., Groth, R. D., Cohen, S. M., Emery, J. F., Li, B., Hoedt, E., Zhang, G., Neubert, T. A., and Tsien, R. W. (2014) vCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression, Cell, 159, 281-294, https://doi.org/10.1016/j.cell.2014.09.019.
- Rostas, J. A. P., and Skelding, K. A. (2023) Calcium/calmodulin-stimulated protein kinase II (CaMKII): different functional outcomes from activation, depending on the cellular microenvironment, Cells, 12, 401, https://doi.org/10.3390/cells12030401.
- Hudson, M. B., and Price, S. R. (2013) Calcineurin: a poorly understood regulator of muscle mass, Int. J. Biochem. Cell Biol., 45, 2173-2178, https://doi.org/10.1016/j.biocel.2013.06.029.
- Fajardo, V. A., Rietze, B. A., Chambers, P. J., Bellissimo, C., Bombardier, E., Quadrillatero, J., and Tupling, A. R. (2017) Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload, Am. J. Physiol. Cell Physiol., 313, C154-C161, https://doi.org/10.1152/ajpcell.00291.2016.
- Moinard, C., and Fontaine, E. (2021) Direct or indirect regulation of muscle protein synthesis by energy status? Clin Nutr., 40, 1893-1896, https://doi.org/10.1016/j.clnu.2020.07.015.
- Figueiredo, V. C., and McCarthy, J. J. (2019) Regulation of ribosome biogenesis in skeletal muscle hypertrophy, Physiology (Bethesda), 34, 30-42, https://doi.org/10.1152/physiol.00034.2018.
- Rozhkov, S. V., Sharlo, K. A., Mirzoev, T. M., and Shenkman, B. S. (2021) Temporal changes in the markers of ribosome biogenesis in rat soleus muscle under simulated microgravity, Acta Astronautica, 186, 252-258, https://doi.org/10.1016/j.actaastro.2021.05.036.
- Wang, Y., and Zhang, Y. (2014) Regulation of TET protein stability by calpains, Cell Rep., 6, 278-284, https://doi.org/10.1016/j.celrep.2013.12.031.
- Jimenez-Vidal, M., Srivastava, J., Putney, L. K., and Barber, D. L. (2010) Nuclear-localized calcineurin homologous protein CHP1 interacts with upstream binding factor and inhibits ribosomal RNA synthesis, J. Biol. Chem., 285, 36260-36266, https://doi.org/10.1074/jbc.M110.165555.
- Bodine, S. C. (2022) The role of mTORC1 in the regulation of skeletal muscle mass, Fac. Rev., 11, 32, https://doi.org/10.12703/r/11-32.
- Mirzoev, T., Tyganov, S., Vilchinskaya, N., Lomonosova, Y., and Shenkman, B. (2016) Key markers of mTORC1-dependent and mTORC1-independent signaling pathways regulating protein synthesis in rat soleus muscle during early stages of hindlimb unloading, Cell Physiol. Biochem., 39, 1011-1020, https://doi.org/10.1159/000447808.
- Rose, A. J., Alsted, T. J., Jensen, T. E., Kobbero, J. B., Maarbjerg, S. J., Jensen, J., and Richter, E. A. (2009) A Ca2+-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions, J. Physiol., 587, 1547-1563, https://doi.org/10.1113/jphysiol.2008.167528.
- Hizli, A. A., Chi, Y., Swanger, J., Carter, J. H., Liao, Y., Welcker, M., Ryazanov, A. G., and Clurman, B. E. (2013) Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase, Mol. Cell Biol., 33, 596-604, https://doi.org/10.1128/MCB.01270-12.
- Bodine, S. C., Latres, E., Baumhueter, S., Lai, V. K., Nunez, L., Clarke, B. A., Poueymirou, W. T., Panaro, F. J., Na, E., Dharmarajan, K., Pan, Z. Q., Valenzuela, D. M., DeChiara, T. M., Stitt, T. N., Yancopoulos, G. D., and Glass, D. J. (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy, Science, 294, 1704-1708, https://doi.org/10.1126/science.1065874.
Дополнительные файлы


