Взаимодействие адипоцитов и В-лимфоцитов при метаболических заболеваниях человека

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Заболевания, связанные с нарушением углеводного и жирового обмена, широко распространены в современном мире. Значительную роль в патогенезе таких заболеваний играет взаимодействие основных клеток жировой ткани - адипоцитов - и клеток иммунной системы. Долговременное повышение уровня глюкозы и жирных кислот приводит к гипертрофии адипоцитов и повышению экспрессии данными клетками провоспалительных цитокинов и адипокинов. В результате находящиеся в ткани иммунные клетки приобретают провоспалительный фенотип, а также происходит привлечение новых лейкоцитов. Воспаление жировой ткани приводит к формированию инсулинорезистентности и стимулирует образование атеросклеротических бляшек и развитие аутоиммунных процессов. Новые исследования показывают, что существенную роль в регуляции воспаления жировой ткани играют разные группы В-лимфоцитов. Снижение числа лимфоцитов типа В2 может подавить развитие ряда метаболических заболеваний, тогда как снижение числа регуляторных В-лимфоцитов и лимфоцитов типа В1 ассоциировано с усилением патологии. Недавние исследования показали, что адипоциты способны влиять на активность В-лимфоцитов как напрямую, так и через изменение активности других иммунных клеток. Эти данные позволяют лучше понять молекулярные механизмы формирования патологий человека, связанных с нарушением углеводного и липидного обмена, таких как сахарный диабет 2 типа.

Об авторах

Е. М Стасевич

Институт молекулярной биологии имени В.А. Энгельгардта РАН

Email: shvarec@yandex.ru
119991 Москва, Россия

Э. А Жеремян

Институт молекулярной биологии имени В.А. Энгельгардта РАН

Email: shvarec@yandex.ru
119991 Москва, Россия

Д. В Купраш

Институт молекулярной биологии имени В.А. Энгельгардта РАН

Email: shvarec@yandex.ru
119991 Москва, Россия

А. М Шварц

Институт молекулярной биологии имени В.А. Энгельгардта РАН;Московский физико-технический институт

Email: shvarec@yandex.ru
119991 Москва, Россия;141701 Московская область, Долгопрудный, Россия

Список литературы

  1. Shen, H., Kreisel, D., and Goldstein, D. R. (2013) Processes of sterile inflammation, J. Immunol., 191, 2857-2863, doi: 10.4049/jimmunol.1301539.
  2. Srikakulapu, P., and McNamara, C. A. (2020) B lymphocytes and adipose tissue inflammation, Arterioscler. Thromb. Vasc. Biol., 40, 1110-1122, doi: 10.1161/ATVBAHA.119.312467.
  3. Song, J., and Deng, T. (2020) The adipocyte and adaptive immunity, Front. Immunol., 11, 593058, doi: 10.3389/fimmu.2020.593058.
  4. Frühbeck, G. (2008) Overview of adipose tissue and its role in obesity and metabolic disorders, Methods Mol. Biol., 456, 1-22, doi: 10.1007/978-1-59745-245-8_1.
  5. Ansel, K. M., Harris, R. B. S., and Cyster, J. G. (2002) CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity, Immunity, 16, 67-76, doi: 10.1016/s1074-7613(01)00257-6.
  6. Benoit, M., Desnues, B., and Mege, J.-L. (2008) Macrophage polarization in bacterial infections, J. Immunol., 181, 3733-3739, doi: 10.4049/jimmunol.181.6.3733.
  7. Mancuso, P. (2016) The role of adipokines in chronic inflammation, ImmunoTargets Ther., 5, 47-56, doi: 10.2147/ITT.S73223.
  8. Wong, S.-C., Puaux, A.-L., Chittezhath, M., Shalova, I., Kajiji, T. S., Wang, X., et al. (2010) Macrophage polarization to a unique phenotype driven by B cells, Eur. J. Immunol., 40, 2296-2307, doi: 10.1002/eji.200940288.
  9. Harmon, D. B., Srikakulapu, P., Kaplan, J. L., Oldham, S. N., McSkimming, C., Garmey, J. C., et al. (2016) Protective role for B-1b B cells and IgM in obesity-associated inflammation, glucose intolerance, and insulin resistance, Arterioscler. Thromb. Vasc. Biol., 36, 682-691, doi: 10.1161/ATVBAHA.116.307166.
  10. Miller, Y. I., Choi, S.-H., Wiesner, P., Fang, L., Harkewicz, R., Hartvigsen, K., et al. (2011) Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity, Circ. Res., 108, 235-248, doi: 10.1161/CIRCRESAHA.110.223875.
  11. Srikakulapu, P., Upadhye, A., Drago, F., Perry, H. M., Bontha, S. V., McSkimming, C., et al. (2021) Chemokine receptor-6 promotes B-1 cell trafficking to perivascular adipose tissue, local IgM production and atheroprotection, Front. Immunol., 12, 636013, doi: 10.3389/fimmu.2021.636013.
  12. Ying, W., Wollam, J., Ofrecio, J. M., Bandyopadhyay, G., El Ouarrat, D., Lee, Y. S., et al. (2017) Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling, J. Clin. Invest., 127, 1019-1030, doi: 10.1172/JCI90350.
  13. Werz, O., Gerstmeier, J., Libreros, S., De la Rosa, X., Werner, M., Norris, P. C., et al. (2018) Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity, Nat. Commun., 9, 59, doi: 10.1038/s41467-017-02538-5.
  14. DeFuria, J., Belkina, A. C., Jagannathan-Bogdan, M., Snyder-Cappione, J., Carr, J. D., Nersesova, Y. R., et al. (2013) B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile, Proc. Natl. Acad. Sci. USA, 110, 5133-5138, doi: 10.1073/pnas.1215840110.
  15. Zhai, X., Qian, G., Wang, Y., Chen, X., Lu, J., Zhang, Y., et al. (2016) Elevated B cell activation is associated with type 2 diabetes development in obese subjects, Cell. Physiol. Biochem., 38, 1257-1266, doi: 10.1159/000443073.
  16. Arkatkar, T., Du, S. W., Jacobs, H. M., Dam, E. M., Hou, B., Buckner, J. H., et al. (2017) B cell-derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity, J. Exp. Med., 214, 3207-3217, doi: 10.1084/jem.20170580.
  17. Wueest, S., Laesser, C. I., Böni-Schnetzler, M., Item, F., Lucchini, F. C., Borsigova, M., et al. (2018) IL-6-type cytokine signaling in adipocytes induces intestinal GLP-1 secretion, Diabetes, 67, 36-45, doi: 10.2337/db17-0637.
  18. Akbari, M., and Hassan-Zadeh, V. (2018) IL-6 signalling pathways and the development of type 2 diabetes, Inflammopharmacology, 26, 685-698, doi: 10.1007/s10787-018-0458-0.
  19. Gómez-Touriño, I., Camiña-Darriba, F., Otero-Romero, I., Rodríguez, M. A., Hernández-Fernández, A., González-Fernández, A., et al. (2010) Autoantibodies to glial fibrillary acid protein and S100beta in diabetic patients, Diabet. Med., 27, 246-248, doi: 10.1111/j.1464-5491.2009.02911.x.
  20. Pietropaolo, M., Barinas-Mitchell, E., Pietropaolo, S. L., Kuller, L. H., and Trucco, M. (2000) Evidence of islet cell autoimmunity in elderly patients with type 2 diabetes, Diabetes, 49, 32-38, doi: 10.2337/diabetes.49.1.32.
  21. Turner, R., Stratton, I., Horton, V., Manley, S., Zimmet, P., Mackay, I. R., et al. (1997) UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group, Lancet (London, England), 350, 1288-1293, doi: 10.1016/s0140-6736(97)03062-6.
  22. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S., and Bhan, A. K. (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation, Immunity, 16, 219-230, doi: 10.1016/s1074-7613(02)00274-1.
  23. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D., and Anderton, S. M. (2002) B cells regulate autoimmunity by provision of IL-10, Nat. Immunol., 3, 944-950, doi: 10.1038/ni833.
  24. Tian, J., Zekzer, D., Hanssen, L., Lu, Y., Olcott, A., and Kaufman, D. L. (2001) Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice, J. Immunol., 167, 1081-1089, doi: 10.4049/jimmunol.167.2.1081.
  25. Parekh, V. V., Prasad, D. V. R., Banerjee, P. P., Joshi, B. N., Kumar, A., and Mishra, G. C. (2003) B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-beta 1, J. Immunol., 170, 5897-5911, doi: 10.4049/jimmunol.170.12.5897.
  26. Wang, R.-X., Yu, C.-R., Dambuza, I. M., Mahdi, R. M., Dolinska, M. B., Sergeev, Y. V., et al. (2014) Interleukin-35 induces regulatory B cells that suppress autoimmune disease, Nat. Med., 20, 633-641, doi: 10.1038/nm.3554.
  27. Asadullah, K., Sterry, W., and Volk, H. D. (2003) Interleukin-10 therapy - review of a new approach, Pharmacol. Rev., 55, 241-269, doi: 10.1124/pr.55.2.4.
  28. Shang, J., Zha, H., and Sun, Y. (2020) Phenotypes, functions, and clinical relevance of regulatory B cells in cancer, Front. Immunol., 11, 582657, doi: 10.3389/fimmu.2020.582657.
  29. Jansen, K., Cevhertas, L., Ma, S., Satitsuksanoa, P., Akdis, M., and van de Veen, W. (2021) Regulatory B cells, A to Z, Allergy, 76, 2699-2715, doi: 10.1111/all.14763.
  30. Nishimura, S., Manabe, I., Takaki, S., Nagasaki, M., Otsu, M., Yamashita, H., et al. (2013) Adipose natural regulatory B cells negatively control adipose tissue inflammation, Cell Metab., 18, 759-766, doi: 10.1016/j.cmet.2013.09.017.
  31. Ghazarian, M., Luck, H., Revelo, X. S., Winer, S., and Winer, D. A. (2015) Immunopathology of adipose tissue during metabolic syndrome, Turk Patoloji Derg., 31 Suppl 1, 172-180, doi: 10.5146/tjpath.2015.01323.
  32. Garcia, S. G., Sandoval-Hellín, N., Clos-Sansalvador, M., Carreras-Planella, L., Morón-Font, M., Guerrero, D., et al. (2022) Mesenchymal stromal cells induced regulatory B cells are enriched in extracellular matrix genes and IL-10 independent modulators, Front. Immunol., 13, 957797, doi: 10.3389/fimmu.2022.957797.
  33. Shen, L., Chng, M. H. Y., Alonso, M. N., Yuan, R., Winer, D. A., and Engleman, E. G. (2015) B-1a lymphocytes attenuate insulin resistance, Diabetes, 64, 593-603, doi: 10.2337/db14-0554.
  34. Capasso, M., Rashed Alyahyawi, A., and Spear, S. (2015) Metabolic control of B cells: more questions than answers, Front. Immunol., 6, 80, doi: 10.3389/fimmu.2015.00080.
  35. Fasshauer, M., and Blüher, M. (2015) Adipokines in health and disease, Trends Pharmacol. Sci., 36, 461-470, doi: 10.1016/j.tips.2015.04.014.
  36. Reiche, M. E., Poels, K., Bosmans, L. A., Vos, W. G., Van Tiel, C. M., Gijbels, M. J. J., et al. (2022) Adipocytes control haematopoiesis and inflammation through CD40 signaling, Haematologica, doi: 10.3324/haematol.2022.281482.
  37. Szumilas, K., Szumilas, P., Słuczanowska-Głąbowska, S., Zgutka, K., and Pawlik, A. (2020) Role of adiponectin in the pathogenesis of rheumatoid arthritis, Int. J. Mol. Sci., 21, 8265, doi: 10.3390/ijms21218265.
  38. Bennett, B. D., Solar, G. P., Yuan, J. Q., Mathias, J., Thomas, G. R., and Matthews, W. (1996) A role for leptin and its cognate receptor in hematopoiesis, Curr. Biol., 6, 1170-1180, doi: 10.1016/s0960-9822(02)70684-2.
  39. Claycombe, K., King, L. E., and Fraker, P. J. (2008) A role for leptin in sustaining lymphopoiesis and myelopoiesis, Proc. Natl. Acad. Sci. USA, 105, 2017-2021, doi: 10.1073/pnas.0712053105.
  40. Lam, Q. L. K., Wang, S., Ko, O. K. H., Kincade, P. W., and Lu, L. (2010) Leptin signaling maintains B-cell homeostasis via induction of Bcl-2 and Cyclin D1, Proc. Natl. Acad. Sci. USA, 107, 13812-13817, doi: 10.1073/pnas.1004185107.
  41. Gupta, S., Agrawal, S., and Gollapudi, S. (2013) Increased activation and cytokine secretion in B cells stimulated with leptin in aged humans, Immun. Ageing, 10, 3, doi: 10.1186/1742-4933-10-3.
  42. Frasca, D., Diaz, A., Romero, M., and Blomberg, B. B. (2020) Leptin induces immunosenescence in human B cells, Cell. Immunol., 348, 103994, doi: 10.1016/j.cellimm.2019.103994.
  43. Chen, J., Tan, B., Karteris, E., Zervou, S., Digby, J., Hillhouse, E. W., et al. (2006) Secretion of adiponectin by human placenta: differential modulation of adiponectin and its receptors by cytokines, Diabetologia, 49, 1292-1302, doi: 10.1007/s00125-006-0194-7.
  44. Zhang, K., Guo, Y., Ge, Z., Zhang, Z., Da, Y., Li, W., et al. (2017) Adiponectin suppresses T helper 17 Cell differentiation and limits autoimmune CNS inflammation via the SIRT1/PPARγ/RORγt pathway, Mol. Neurobiol., 54, 4908-4920, doi: 10.1007/s12035-016-0036-7.
  45. Li, W., Geng, L., Liu, X., Gui, W., and Qi, H. (2019) Recombinant adiponectin alleviates abortion in mice by regulating Th17/Treg imbalance via p38MAPK-STAT5 pathway, Biol. Reprod., 100, 1008-1017, doi: 10.1093/biolre/ioy251.
  46. Tsang, J. Y. S., Li, D., Ho, D., Peng, J., Xu, A., Lamb, J., et al. (2011) Novel immunomodulatory effects of adiponectin on dendritic cell functions, Int. Immunopharmacol., 11, 604-609, doi: 10.1016/j.intimp.2010.11.009.
  47. Cheng, X., Folco, E. J., Shimizu, K., and Libby, P. (2012) Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ T cells, J. Biol. Chem., 287, 36896-36904, doi: 10.1074/jbc.M112.409516.
  48. Tsao, T.-S., Tomas, E., Murrey, H. E., Hug, C., Lee, D. H., Ruderman, N. B., et al. (2003) Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways, J. Biol. Chem., 278, 50810-50817, doi: 10.1074/jbc.M309469200.
  49. Pang, T. T. L., and Narendran, P. (2008) The distribution of adiponectin receptors on human peripheral blood mononuclear cells, Ann. N. Y. Acad. Sci., 1150, 143-145, doi: 10.1196/annals.1447.021.
  50. Yokota, T., Meka, C. S. R., Kouro, T., Medina, K. L., Igarashi, H., Takahashi, M., et al. (2003) Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in bone marrow cultures by activation of the cyclooxygenase-prostaglandin pathway in stromal cells, J. Immunol., 171, 5091-5099, doi: 10.4049/jimmunol.171.10.5091.
  51. Chimen, M., McGettrick, H. M., Apta, B., Kuravi, S. J., Yates, C. M., Kennedy, A., et al. (2015) Homeostatic regulation of T cell trafficking by a B cell-derived peptide is impaired in autoimmune and chronic inflammatory disease, Nat. Med., 21, 467-475, doi: 10.1038/nm.3842.
  52. Obeid, S., Wankell, M., Charrez, B., Sternberg, J., Kreuter, R., Esmaili, S., et al. (2017) Adiponectin confers protection from acute colitis and restricts a B cell immune response, J. Biol. Chem., 292, 6569-6582, doi: 10.1074/jbc.M115.712646.
  53. Che, N., Sun, X., Gu, L., Wang, X., Shi, J., Sun, Y., et al. (2021) Adiponectin enhances B-cell proliferation and differentiation via activation of Akt1/STAT3 and exacerbates collagen-induced arthritis, Front. Immunol., 12, 626310, doi: 10.3389/fimmu.2021.626310.
  54. Fukuhara, A., Matsuda, M., Nishizawa, M., Segawa, K., Tanaka, M., Kishimoto, K., et al. (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin, Science, 307, 426-430, doi: 10.1126/science.1097243.
  55. Samal, B., Sun, Y., Stearns, G., Xie, C., Suggs, S., and McNiece, I. (1994) Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor, Mol. Cell. Biol., 14, 1431-1437, doi: 10.1128/mcb.14.2.1431-1437.1994.
  56. Moschen, A. R., Kaser, A., Enrich, B., Mosheimer, B., Theurl, M., Niederegger, H., et al. (2007) Visfatin, an adipocytokine with proinflammatory and immunomodulating properties, J. Immunol., 178, 1748-1758, doi: 10.4049/jimmunol.178.3.1748.
  57. Craxton, A., Magaletti, D., Ryan, E. J., and Clark, E. A. (2003) Macrophage- and dendritic cell - dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF, Blood, 101, 4464-4471, doi: 10.1182/blood-2002-10-3123.
  58. Müller, N., Schulte, D. M., Hillebrand, S., Türk, K., Hampe, J., Schafmayer, C., et al. (2014) B Lymphocyte Stimulator (BLyS) is expressed in human adipocytes in vivo and is related to obesity but not to insulin resistance, PLoS One, 9, e94282, doi: 10.1371/journal.pone.0094282.
  59. Chan, C. C., Harley, I. T. W., Pfluger, P. T., Trompette, A., Stankiewicz, T. E., Allen, J. L., et al. (2021) A BAFF/APRIL axis regulates obesogenic diet-driven weight gain, Nat. Commun., 12, 2911, doi: 10.1038/s41467-021-23084-1.
  60. Kim, B., and Hyun, C.-K. (2020) B-cell-activating factor depletion ameliorates aging-dependent insulin resistance via enhancement of thermogenesis in adipose tissues, Int. J. Mol. Sci., 21, 5121, doi: 10.3390/ijms21145121.
  61. Apostolopoulos, V., de Courten, M. P. J., Stojanovska, L., Blatch, G. L., Tangalakis, K., and de Courten, B. (2016) The complex immunological and inflammatory network of adipose tissue in obesity, Mol. Nutr. Food Res., 60, 43-57, doi: 10.1002/mnfr.201500272.
  62. Biondi, G., Marrano, N., Borrelli, A., Rella, M., Palma, G., Calderoni, I., et al. (2022) Adipose tissue secretion pattern influences β-cell wellness in the transition from obesity to type 2 diabetes, Int. J. Mol. Sci., 23, 5522, doi: 10.3390/ijms23105522.
  63. Spencer, N. F., and Daynes, R. A. (1997) IL-12 directly stimulates expression of IL-10 by CD5+ B cells and IL-6 by both CD5+ and CD5- B cells: possible involvement in age-associated cytokine dysregulation, Int. Immunol., 9, 745-754, doi: 10.1093/intimm/9.5.745.
  64. Figueiró, F., Muller, L., Funk, S., Jackson, E. K., Battastini, A. M. O., and Whiteside, T. L. (2016) Phenotypic and functional characteristics of CD39high human regulatory B cells (Breg), Oncoimmunology, 5, e1082703, doi: 10.1080/2162402X.2015.1082703.
  65. Giraldez, M. D., Carneros, D., Garbers, C., Rose-John, S., and Bustos, M. (2021) New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology, Nat. Rev. Gastroenterol. Hepatol., 18, 787-803, doi: 10.1038/s41575-021-00473-x.
  66. Kalliolias, G. D., and Ivashkiv, L. B. (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies, Nat. Rev. Rheumatol., 12, 49-62, doi: 10.1038/nrrheum.2015.169.
  67. Chen, X., Xun, K., Chen, L., and Wang, Y. (2009) TNF-α, a potent lipid metabolism regulator, Cell Biochem. Funct., 27, 407-416, doi: 10.1002/cbf.1596.
  68. Hotamisligil, G. S., Budavari, A., Murray, D., and Spiegelman, B. M. (1994) Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha, J. Clin. Invest., 94, 1543-1549, doi: 10.1172/JCI117495.
  69. Coppack, S. W. (2001) Pro-inflammatory cytokines and adipose tissue, Proc. Nutr. Soc., 60, 349-356, doi: 10.1079/pns2001110.
  70. Song, M., Meng, L., Liu, X., and Yang, Y. (2021) Feprazone prevents free fatty acid (FFA)-induced endothelial inflammation by mitigating the activation of the TLR4/MyD88/NF-κB pathway, ACS Omega, 6, 4850-4856, doi: 10.1021/acsomega.0c05826.
  71. Xu, Y., Wu, K., Han, S., Ding, S., Lu, G., Lin, Z., et al. (2020) Astilbin combined with lipopolysaccharide induces IL-10-producing regulatory B cells via the STAT3 signalling pathway, Biomed. Pharmacother., 129, 110450, doi: 10.1016/j.biopha.2020.110450.
  72. Wang, K., Tao, L., Su, J., Zhang, Y., Zou, B., Wang, Y., et al. (2017) TLR4 supports the expansion of FasL+CD5+CD1dhi regulatory B cells, which decreases in contact hypersensitivity, Mol. Immunol., 87, 188-199, doi: 10.1016/j.molimm.2017.04.016.
  73. McLaughlin, T., Ackerman, S. E., Shen, L., and Engleman, E. (2017) Role of innate and adaptive immunity in obesity-associated metabolic disease, J. Clin. Invest., 127, 5-13, doi: 10.1172/JCI88876.
  74. Xiao, Y., Deng, C., and Zhou, Z. (2021) The multiple roles of B lymphocytes in the onset and treatment of type 1 diabetes: interactions between B lymphocytes and T cells, J. Diabetes Res., 2021, 6581213, doi: 10.1155/2021/6581213.
  75. Fernandez, N. C., and Shinoda, K. (2022) The role of B lymphocyte subsets in adipose tissue development, metabolism, and aging, Compr. Physiol., 12, 4133-4145, doi: 10.1002/cphy.c220006.
  76. Karl, M., Hasselwander, S., Zhou, Y., Reifenberg, G., Kim, Y. O., Park, K.-S., et al. (2022) Dual roles of B lymphocytes in mouse models of diet-induced nonalcoholic fatty liver disease, Hepatology, 76, 1135-1149, doi: 10.1002/hep.32428.
  77. Kim, Y. H., Choi, B. H., Cheon, H. G., Do, M. S. (2009) B cell activation factor (BAFF) is a novel adipokine that links obesity and inflammation, Exp. Mol. Med., 41, 208-216, doi: 10.3858/emm.2009.41.3.024.
  78. Francisco, V., Pino, J., Gonzalez-Gay, M. A., Mera, A., Lago, F., Gómez, R., et al. (2018) Adipokines and inflammation: is it a question of weight? Br. J. Pharmacol., 175, 1569-1579, doi: 10.1111/bph.14181.
  79. Dludla, P. V., Nkambule, B. B., Mazibuko-Mbeje, S. E., Nyambuya, T. M., Mxinwa, V., Mokgalaboni, K., et al. (2021) Adipokines as a therapeutic target by metformin to improve metabolic function: a systematic review of randomized controlled trials, Pharmacol. Res., 163, 105219, doi: 10.1016/j.phrs.2020.105219.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах