Novel chlorin with branched polyamine and its photoinduced antimicrobial activity
- Autores: Suvorov N.V.1, Gamenyuk G.M.1, Safonova E.A.1, Shagabaeva M.A.1, Shchelkova V.V.2, Tikhonov S.I.1, Minakov D.A.1, Konovalova N.V.1, Vasil'ev Y.L.1,3, Grin M.A.1
-
Afiliações:
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
- A. N. Kosygin Russian State University
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
- Edição: Volume 90, Nº 7 (2025): VOL 90, NO7 (2025)
- Páginas: 1063-1072
- Seção: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/356230
- DOI: https://doi.org/10.31857/S0320972525070134
- EDN: https://elibrary.ru/KAEZHO
- ID: 356230
Citar
Resumo
Multiple antibiotic resistance is one of the major security risks in the field of global health. One of the approaches to solving this problem is antimicrobial photodynamic therapy, but currently used clinical photosensitizers are not sufficiently effective against various pathogens. Polycationic molecular constructs enhance the binding and penetration of photosensitizers into poorly permeable gram-negative bacteria. One of the methods for obtaining such conjugates is the introduction of various polyethyleneimines into the photosensitizer molecule. In this work, a branched tetraamine was synthesized and introduced into pyrrole ring A of the natural chlorin molecule. The study assessed the photoinduced toxicity of the new photosensitizer in vitro against Staphylococcus aureus,
Enterococcus faecalis, Pseudomonas aeruginosa, and E. coli bacteria. It was established that the obtained chlorin with a branched polyamine residue had an increased bactericidal effect when irradiated with light compared to its structural precursor.
Palavras-chave
Sobre autores
N. Suvorov
Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
Autor responsável pela correspondência
Email: suvorov.nv@gmail.com
Moscow
G. Gamenyuk
Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
Email: suvorov.nv@gmail.com
Moscow
E. Safonova
Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
Email: suvorov.nv@gmail.com
Moscow
M. Shagabaeva
Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
Email: suvorov.nv@gmail.com
Moscow
V. Shchelkova
A. N. Kosygin Russian State University
Email: suvorov.nv@gmail.com
Moscow
S. Tikhonov
Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
Email: suvorov.nv@gmail.com
Moscow
D. Minakov
Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
Email: suvorov.nv@gmail.com
Moscow
N. Konovalova
Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
Email: suvorov.nv@gmail.com
Moscow
Y. Vasil'ev
Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University; I. M. Sechenov First Moscow State Medical University (Sechenov University)
Email: suvorov.nv@gmail.com
Moscow
M. Grin
Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University
Email: suvorov.nv@gmail.com
Moscow
Bibliografia
- Maisch, T. (2009) A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment, Mini Rev. Med. Chem., 9, 974-983, https://doi.org/10.2174/138955709788681582.
- Suvorov, N., Pogorilyy, V., Diachkova, E., Vasil'ev, Y., Mironov, A., and Grin, M. (2021) Derivatives of natural chlorophylls as agents for antimicrobial photodynamic therapy, Int. J. Mol. Sci., 22, 6392, https://doi.org/10.3390/ijms22126392.
- Minnock, A., Vernon, D. I., Schofield, J., Griffiths, J., Parish, J. H., and Brown, S. B. (1996) Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria, J. Photochem. Photobiol. B Biol., 32, 159-164, https://doi.org/10.1016/1011-1344(95)07148-2.
- Sperandio, F., Huang, Y.-Y., and Hamblin, M. (2013) Antimicrobial photodynamic therapy to kill Gram-negative bacteria, Recent Patents on Anti-Infective Drug Discovery, 8, 108-120, https://doi.org/10.2174/1574891X113089990012.
- Kustov, A. V., Belykh, D. V., Smirnova, N. L., Venediktov, E. A., Kudayarova, T. V., Kruchin, S. O., Khudyaeva, I. S., and Berezin, D. B. (2018) Synthesis and investigation of water-soluble chlorophyll pigments for antimicrobial photodynamic therapy, Dyes Pigm., 149, 553-559, https://doi.org/10.1016/j.dyepig.2017.09.073.
- Кустов А.В., Березин Д.Б., Гагуа А.К., Койфман М.О., Кукушкина Н.В. (2023) Патент РФ 2794092. 13(1)-n-(4'-n'n'-диметилпиперазинил иодид) амид, 15(2), 17(3)-диметиловый эфир хлорина e6.
- Wu, J., Tian, J., Rui, L., and Zhang, W. (2018) Enhancing the efficacy of photodynamic therapy (PDT) via water-soluble pillar[5]arene-based supramolecular complexes, Chem. Commun., 54, 7629-7632, https://doi.org/10.1039/C8CC04275F.
- Karmakova, T., Pljutinskaya, A., Mass, O., Grin, M., Yakubovskaya, R., Mironov, A., and Maurizot, J.-C. (2007) 13,15-N-Cycloimide derivatives of chlorin p6 with isonicotinyl substituent are photosensitizers targeted to lysosomes, Photochem. Photobiol. Sci., 6, 1184-1196, https://doi.org/10.1039/b706921a.
- Nechaev, A. V., and Mironov, A. F. (2008) New amphiphilic chlorins of the chlorophyll a series, Russ. J. Bioorg. Chem., 34, 245-251, https://doi.org/10.1134/S1068162008020167.
- Kirin, N. S., Ostroverkhov, P. V., Usachev, M. N., Birin, K. P., and Grin, M. A. (2024) Platinum (II) complexes based on derivatives of natural chlorins with pyridine-containing chelate groups as prototypes of drugs for combination therapy in oncology, Fine Chem. Technol., 19, 310-326, https://doi.org/10.32362/2410-6593-2024-19-4-310-326.
- Kustov, A. V. (2023) Natural chlorin photosensitizers and potentiating agents for antimicrobial photodynamic therapy, ChemChemTech., 66, 32-40, https://doi.org/10.6060/ivkkt.20236612.6902.
- Li, J. Z., Wang, J. J., Yoon, I., Cui, B. C., and Shim, Y. K. (2012) Synthesis of novel long wavelength cationic chlorins via stereoselective aldol-like condensation, Bioorg. Med. Chem. Lett., 22, 1846-1849, https://doi.org/10.1016/j.bmcl.2012.01.088.
- Брусов С.С., Колоскова Ю.С., Грин М.А., Тиганова И.Г., Пагина О.Е., Толордава Э.Р., Степанова Т.В., Меерович Г.А., Романова Ю.М., Миронов А.Ф. (2014) Новый катионный пурпуринимид для фотодинамической инактивации биопленок Pseudomonas aeruginosa, Росс. Биотер. Журн., 13, 59-63.
- Брусов С.С., Грин М.А., Меерович Г.А., Миронов А.Ф., Романова Ю.М., Тиганова И.Г. (2017) Патент РФ 2610566. Способ фотодинамической терапии локальных очагов инфекции.
- Брусов С.С., Ефременко А.В., Лебедева В.С., Щепелина Е.Ю., Пономарев Г.В., Феофанов А.В., Миронов А.Ф., Грин М.А. (2015) Влияние положительного заряда в структуре фотосенсибилизаторов хлоринового ряда на фотоиндуцированную противоопухолевую активность, Росс. Биотер. Журн., 14, 87-92, https://doi.org/10.17650/1726-9784-2015-14-4-87-92.
- Tegos, G. P., Anbe, M., Yang, C., Demidova, T. N., Satti, M., Mroz, P., Janjua, S., Gad, F., and Hamblin, M. R. (2006) Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin(e6) for broad-spectrum antimicrobial photoinactivation, Antimicrob. Agents Chemother., 50, 1402-1410, https://doi.org/10.1128/aac.50.4.1402-1410.2006.
- Hargus, J. A., Fronczek, F. R., Vicente, M. G. H., and Smith, K. M. (2007) Mono-(L)-aspartylchlorin-e6, Photochem. Photobiol., 83, 1006-1015, https://doi.org/10.1111/j.1751-1097.2007.00092.x.
- Osuka, A., Wada, Y., and Shinoda, S. (1996) Covalently linked pyropheophorbide dimers as models of the special pair in the photosynthetic reaction center, Tetrahedron, 52, 4311-4326, https://doi.org/10.1016/0040-4020(96)00131-7.
- Belykh, D. V., Kozlov, A. S., Pylina, Y. I., Khudyaeva, I. S., and Krasnovsky, A. A. (2019) Copper complexes of chlorin derivatives of chlorophyll a as potential photosensitizers for medical purposes, Macroheterocycles, 12, 68-74, https://doi.org/10.6060/mhc190128b.
- Капинус В.Н., Каплан М.А., Ярославцева-Исаева Е.В., Спиченкова И.С., Иванов С.А. (2021) Применение хлорин Е6-фотодинамической терапии базальноклеточного рака кожи, Res. Pract. Med. J., 8, 33-43, https://doi.org/10.17709/2410-1893-2021-8-4-3.
- Жидоморов Н.Ю., Назаренко О.А., Демидов В.И., Кустов А.В., Кукушкина Н.В., Койфман О.И., Гагуа А.К., Томилова И.К., Березин Д.Б. (2022) Исследование острой токсичности монокатионного производного хлорина е6 - перспективного фотосенсибилизатора для антимикробной и противоопухолевой фотодинамической терапии, Biomed. Photon., 11, 23-32, https://doi.org/10.24931/2413-9432-2022-11-2-23-32.
- Странадко Е.Ф. (2015) Основные этапы развития фотодинамической терапии в России, Biomed. Photon., 4, 3-10, https://doi.org/10.24931/2413-9432-2015-4-1-3-10.
- Слесаревская М.Н., Соколов А.В. (2012) Фотодинамическая терапия: основные принципы и механизмы действия, Урол. Ведом., 2, 24-28.
- Hak, A., Ali, M. S., Sankaranarayanan, S. A., Shinde, V. R., and Rengan, A. K. (2023) Chlorin e6: a promising photosensitizer in photo-based cancer nanomedicine, ACS Appl. Bio Mater., 6, 349-364, https://doi.org/10.1021/acsabm.2c00891.
- Lonin, I. S., Grin, M. A., Lakhina, A. A., and Mironov, A. F. (2012) Synthesis of chlorophyll a glycoconjugates using olefin cross-metathesis, Mendeleev Commun., 22, 157-158, https://doi.org/10.1016/j.mencom.2012.05.016.
- Suvorov, N. V., Shchelkova, V. V., Rysanova, E. V., Bagatelia, Z. T., Diachenko, D. A., Afaniutin, A. P., Vasil'ev, Yu. L., Diachkova, E. Yu., Santana Santos, I. C., and Grin, M. A. (2024) New cationic chlorin as potential agent for antimicrobial photodynamic therapy, Biomed. Photon., 13, 14-19, https://doi.org/10.24931/2413-9432-2024-13-3-14-19.
- Popov, A., Suvorov, N., Larkina, M., Plotnikov, E., Varvashenya, R., Bodenko, V., Yanovich, G., Ostroverkhov, P., Usachev, M., Filonenko, E., Belousov, M., and Grin, M. (2024) Novel chlorin with a HYNIC: synthesis, 99mTc-radiolabeling, and initial preclinical evaluation, Molecules, 30, 117, https://doi.org/10.3390/molecules30010117.
- Abiraj, K., Mansi, R., Tamma, M.-L., Forrer, F., Cescato, R., Reubi, J. C., Akyel, K. G., and Maecke, H. R. (2010) Tetraamine-derived bifunctional chelators for technetium-99m labelling: synthesis, bioconjugation and evaluation as targeted SPECT imaging probes for GRP-receptor-positive tumours, Chem. Eur. J., 16, 2115-2124, https://doi.org/10.1002/chem.200902011.
- Hicks, M. R., Rullay, A. K., Pedrido, R., Crout, D. H., and Pinheiro, T. J. (2008) Efficient synthesis of methanesulphonate-derived lipid chains for attachment of proteins to lipid membranes, Synth. Commun., 38, 3726-3750, https://doi.org/10.1080/00397910802213794.
- Van Greunen, D. G., Cordier, W., Nell, M., Van der Westhuyzen, C., Steenkamp, V., Panayides, J. L., and Riley, D. L. (2017) Targeting Alzheimer's disease by investigating previously unexplored chemical space surrounding the cholinesterase inhibitor donepezil, Eur. J. Med. Chem., 127, 671-690, https://doi.org/10.1016/j.ejmech.2016.10.036.
- Suvorov, N. V., Grin, M. A., Popkov, A. M., Garanina, A. S., Mironov, A. F., and Majouga, A. G. (2016) Novel photosensitizer based on bacteriopurpurinimide and magnetite nanoparticles, Macroheterocycles, 9, 175-179, https://doi.org/10.6060/mhc160645s.
- Frimannsson, D. O., Grossi, M., Murtagh, J., Paradisi, F., and O'Shea, D. F. (2010) Light induced antimicrobial properties of a brominated boron difluoride (BF2) chelated tetraarylazadipyrromethene photosensitizer, J. Med. Chem., 53, 7337-7343, https://doi.org/10.1021/jm100585j.
Arquivos suplementares

