Molecular biomarkers of neurodegeneration in amyotrophic lateral sclerosis
- Autores: Shevchuk D.V.1, Tukhvatulin A.I.2, Dzharullaeva A.S.2, Berdalina I.A.1, Zakharova M.N.1
-
Afiliações:
- Research Center of Neurology
- National Research Center for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya of the Ministry of Health of the Russian Federation
- Edição: Volume 90, Nº 2 (2025)
- Páginas: 306-320
- Seção: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/291906
- DOI: https://doi.org/10.31857/S0320972525020107
- EDN: https://elibrary.ru/BKVBCM
- ID: 291906
Citar
Resumo
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disease. However, definitive diagnosis can be delayed by up to 12 months due to the lack of specific and sensitive biomarkers for ALS. In our study, conducted for the first time on a large cohort of ALS patients (n = 100) within the Russian population, we assessed key biomarkers of neurodegenerative pathology, including β-amyloids (Aβ40 and Aβ42) and tau proteins (Tau-total and Tau-p181), as well as other pathogenetically relevant, promising biomarkers such as FGF-21, Kallikrein-6 (KLK-6), NCAM-1, Neurogranin (NRGN), TDP-43, Apolipoprotein E4, Clusterin (Apo J), Complement Factor H, Fetuin-A, α2-Macroglobulin, Apo AI, Apo CIII, Apo E, Complement C3, GDNF, sRAGE, and S100B protein. Significant differences between ALS patients and the control group were observed for Aβ40 (p = 0.044), Aβ42 (p < 0.001), FGF-21 (p < 0.001), Tau-total (p = 0.001), Tau-pT181 (p = 0.014), Clusterin (p < 0.001), Complement C3 (p = 0.001), and S100B (p = 0.024). A significant direct correlation was found between ALSFRS-R score and the concentrations of Aβ40 and Aβ42. Alterations in the complement system (Complement C3 and Complement Factor H) were identified, highlighting the critical role of neuroinflammatory processes in ALS pathogenesis. Additionally, increased levels of FGF-21 were observed in patients with the bulbar onset of ALS. The significant elevation in concentration of the chaperone protein clusterin in patients with rapid disease progression suggests its potential as a prognostic biomarker for motor neuron disease. Furthermore, its role in maintaining proteostasis could provide novel therapeutic targets for intervention.
Palavras-chave
Sobre autores
D. Shevchuk
Research Center of Neurology
Autor responsável pela correspondência
Email: dvlshev@gmail.com
Rússia, 125367 Moscow
A. Tukhvatulin
National Research Center for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya of the Ministry of Health of the Russian Federation
Email: dvlshev@gmail.com
Rússia, 123098 Moscow
A. Dzharullaeva
National Research Center for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya of the Ministry of Health of the Russian Federation
Email: dvlshev@gmail.com
Rússia, 123098 Moscow
I. Berdalina
Research Center of Neurology
Email: dvlshev@gmail.com
Rússia, 125367 Moscow
M. Zakharova
Research Center of Neurology
Email: dvlshev@gmail.com
Rússia, 125367 Moscow
Bibliografia
- Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G., Robberecht, W., Shaw, P. J., Simmons, Z., and van den Berg, L. H. (2017) Amyotrophic lateral sclerosis, Nat. Rev. Di.s Primers, 3, 17071, https://doi.org/10.1038/nrdp.2017.71.
- Arthur, K. C., Calvo, A., Price, T. R., Geiger, J. T., Chiò, A., and Traynor, B. J. (2016) Projected increase in amyotrophic lateral sclerosis from 2015 to 2040, Nat. Commun., 7, 12408, https://doi.org/10.1038/ncomms12408.
- Shevchuk, D. V., Abramova, A. A., and Zakharova, M. N. (2022) The role of inflammasomes in the pathogenesis of neurodegenerative diseases, Neurochem. J., 16, 271-282, https://doi.org/10.1134/S1819712422030114.
- Ludolph, A., Drory, V., Hardiman, O., Nakano, I., Ravits, J., Robberecht, W., and Shefner, J. (2015) A revision of the El Escorial criteria – 2015, Amyotroph. Lateral Scler. Frontotemporal. Degener., 16, 291-292, https://doi.org/ 10.3109/21678421.2015.1049183.
- Lanznaster, D., de Assis, D. R., Corcia, P., Pradat, P.-F., and Blasco, H. (2018) Metabolomics biomarkers: a strategy toward therapeutics improvement in ALS, Front. Neurol., 9, https://doi.org/10.3389/fneur.2018.01126.
- Poesen, K., and Van Damme, P. (2019) Diagnostic and prognostic performance of neurofilaments in ALS, Front. Neurol., 9, https://doi.org/10.3389/fneur.2018.01167.
- Wilke, C., Deuschle, C., Rattay, T. W., Maetzler, W., and Synofzik, M. (2015) Total tau is increased, but phosphorylated tau not decreased, in cerebrospinal fluid in amyotrophic lateral sclerosis, Neurobiol. Aging, 36, 1072-1074, https://doi.org/10.1016/j.neurobiolaging.2014.10.019.
- Burrell, J. R., Halliday, G. M., Kril, J. J., Ittner, L. M., Götz, J., Kiernan, M. C., and Hodges, J. R. (2016) The frontotemporal dementia-motor neuron disease continuum, Lancet, 388, 919-931, https://doi.org/10.1016/ S0140-6736(16)00737-6.
- Steinacker, P., Hendrich, C., Sperfeld, A.-D., Jesse, S., Lehnert, S., Pabst, A., von Arnim, C. A. F., Mottaghy, F. M., Uttner, I., Tumani, H., Ludolph, A., and Otto, M. (2009) Concentrations of beta-amyloid precursor protein processing products in cerebrospinal fluid of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration, J. Neural. Transm., 116, 1169-1178, https://doi.org/10.1007/s00702-009-0271-4.
- Rusina, R., Ridzoň, P., Kulišt’ák, P., Keller, O., Bartoš, A., Buncová, M., Fialová, L., Koukolík, F., and Matěj, R. (2010) Relationship between ALS and the degree of cognitive impairment, markers of neurodegeneration and predictors for poor outcome. A prospective study, Eur. J. Neurol., 17, 23-30, https://doi.org/10.1111/j.1468-1331.2009.02717.x.
- Hardy, J. (2006) Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal, J. Alzheimer’s Dis., 9, 151-153, https://doi.org/10.3233/JAD-2006-9S317.
- Lanznaster, D., Hergesheimer, R. C., Bakkouche, S. E., Beltran, S., Vourc’h, P., Andres, C. R., Dufour-Rainfray, D., Corcia, P., and Blasco, H. (2020) Aβ1-42 and tau as potential biomarkers for diagnosis and prognosis of amyotrophic lateral sclerosis, Int. J. Mol. Sci., 21, https://doi.org/10.3390/ijms21082911.
- Kimura, F., Fujimura, C., Ishida, S., Nakajima, H., Furutama, D., Uehara, H., Shinoda, K., Sugino, M., and Hanafusa, T. (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS, Neurology, 66, 265-267, https://doi.org/10.1212/01.wnl.0000194316.91908.8a.
- Iaccarino, L., Burnham, S. C., Dell’Agnello, G., Dowsett, S. A., and Epelbaum, S. (2023) Diagnostic biomarkers of amyloid and tau pathology in Alzheimer’s disease: an overview of tests for clinical practice in the United States and Europe, J. Prev. Alzheimers Dis., 10, 426-442, https://doi.org/10.14283/jpad.2023.43.
- Abu-Rumeileh, S., Mometto, N., Bartoletti-Stella, A., Polischi, B., Oppi, F., Poda, R., Stanzani Maserati, M., Cortelli, P., Liguori, R., Capellari, S., and Parchi, P. (2018) Cerebrospinal fluid biomarkers in patients with frontotemporal dementia spectrum: a single-center study, J. Alzheimer’s Dis., 66, 551-563, https://doi.org/10.3233/ JAD-180409.
- Paterson, R. W., Slattery, C. F., Poole, T., Nicholas, J. M., Magdalinou, N. K., Toombs, J., Chapman, M. D., Lunn, M. P., Heslegrave, A. J., Foiani, M. S., Weston, P. S. J., Keshavan, A., Rohrer, J. D., Rossor, M. N., Warren, J. D., Mummery, C. J., Blennow, K., Fox, N. C., Zetterberg, H., and Schott, J. M. (2018) Cerebrospinal fluid in the differential diagnosis of Alzheimer’s disease: clinical utility of an extended panel of biomarkers in a specialist cognitive clinic, Alzheimers Res. Ther., 10, 32, https://doi.org/10.1186/s13195-018-0361-3.
- Ye, L.-Q., Li, X.-Y., Zhang, Y.-B., Cheng, H.-R., Ma, Y., Chen, D.-F., Tao, Q.-Q., Li, H.-L., and Wu, Z.-Y. (2020) The discriminative capacity of CSF β-amyloid 42 and Tau in neurodegenerative diseases in the Chinese population, J. Neurol. Sci., 412, 116756, https://doi.org/10.1016/j.jns.2020.116756.
- Hadjichrysanthou, C., Evans, S., Bajaj, S., Siakallis, L. C., McRae-McKee, K., de Wolf, F., and Anderson, R. M. (2020) The dynamics of biomarkers across the clinical spectrum of Alzheimer’s disease, Alzheimers Res. Ther., 12, 74, https://doi.org/10.1186/s13195-020-00636-z.
- Stanga, S., Brambilla, L., Tasiaux, B., Dang, A. H., Ivanoiu, A., Octave, J.-N., Rossi, D., van Pesch, V., and Kienlen-Campard, P. (2018) A role for GDNF and Soluble APP as biomarkers of amyotrophic lateral sclerosis pathophysiology, Front. Neurol., 9, https://doi.org/10.3389/fneur.2018.00384.
- Herman, A. M., Khandelwal, P. J., Stanczyk, B. B., Rebeck, G. W., and Moussa, C. E.-H. (2011) β-Amyloid triggers ALS-associated TDP-43 pathology in AD models, Brain Res., 1386, 191-199, https://doi.org/10.1016/ j.brainres.2011.02.052.
- Calingasan, N. Y., Chen, J., Kiaei, M., and Beal, M. F. (2005) β-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients, Neurobiol. Dis., 19, 340-347, https://doi.org/10.1016/ j.nbd.2005.01.012.
- Sjögren, M., Davidsson, P., Wallin, A., Granérus, A.-K., Grundström, E., Askmark, H., Vanmechelen, E., and Blennow, K. (2002) Decreased CSF-β-amyloid 42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of β-amyloid induced by disparate mechanisms, Dement. Geriatr. Cogn. Disord., 13, 112-118, https://doi.org/10.1159/000048642.
- Sasaki, S., and Iwata, M. (1999) Immunoreactivity of β-amyloid precursor protein in amyotrophic lateral sclerosis, Acta Neuropathol., 97, 463-468, https://doi.org/10.1007/s004010051015.
- Ballatore, C., Lee, V. M.-Y., and Trojanowski, J. Q. (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders, Nat. Rev. Neurosci., 8, 663-672, https://doi.org/10.1038/nrn2194.
- Agnello, L., Colletti, T., Lo Sasso, B., Vidali, M., Spataro, R., Gambino, C. M., Giglio, R. V., Piccoli, T., Bivona, G., La Bella, V., and Ciaccio, M. (2021) Tau protein as a diagnostic and prognostic biomarker in amyotrophic lateral sclerosis, Eur. J. Neurol., 28, 1868-1875, https://doi.org/10.1111/ene.14789.
- Murdock, B. J., Bender, D. E., Segal, B. M., and Feldman, E. L. (2015) The dual roles of immunity in ALS: injury overrides protection, Neurobiol. Dis., 77, 1-12, https://doi.org/10.1016/j.nbd.2015.02.017.
- Kano, O., Beers, D. R., Henkel, J. S., and Appel, S. H. (2012) Peripheral nerve inflammation in ALS mice: cause or consequence, Neurology, 78, 833-835, https://doi.org/10.1212/WNL.0b013e318249f776.
- Delaye, J. B., Lanznaster, D., Veyrat-Durebex, C., Fontaine, A., Bacle, G., Lefevre, A., Hergesheimer, R., Lecron, J. C., Vourc’h, P., Andres, C. R., Maillot, F., Corcia, P., Emond, P., and Blasco, H. (2021) Behavioral, hormonal, inflammatory, and metabolic effects associated with FGF21-pathway activation in an ALS mouse model, Neurotherapeutics 18, 297-308, https://doi.org/10.1007/s13311-020-00933-3.
- Andersen, P. M., and Al-Chalabi, A. (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol., 7, 603-615, https://doi.org/10.1038/nrneurol.2011.150.
- Hasantari, I., Nicolas, N., Alzieu, P., Leval, L., Shalabi, A., Grolleau, S., and Dinet, V. (2024) Factor H’s control of complement activation emerges as a significant and promising therapeutic target for Alzheimer’s disease treatment, Int. J. Mol. Sci., 5, https://doi.org/10.3390/ijms25042272.
- Borras, C., Canonica, J., Jorieux, S., Abache, T., El Sanharawi, M., Klein, C., Delaunay, K., Jonet, L., Salvodelli, M., Naud, M.-C., Arsenijevic, Y., Shalabi, A., Souchaud, L., Behar-Cohen, F., and Dinet, V. (2019) CFH exerts anti-oxidant effects on retinal pigment epithelial cells independently from protecting against membrane attack complex, Sci. Rep., 9, 13873, https://doi.org/10.1038/s41598-019-50420-9.
- Borras, C., Delaunay, K., Slaoui, Y., Abache, T., Jorieux, S., Naud, M.-C., Sanharawi, M. E., Gelize, E., Lassiaz, P., An, N., Kowalczuk, L., Ayassami, C., Moulin, A., Behar-Cohen, F., Mascarelli, F., and Dinet, V. (2020) Mechanisms of FH protection against neovascular AMD, Front. Immunol., 11, https://doi.org/10.3389/fimmu. 2020.00443.
- Li, Y., Smith, V., Skinner, S., Robertson, A., Lenkiu, L., Cannon-Patron, H., Martinez, D., Hanson, H., Hickman, J. J., and Eyerman, D. (2023) Effect of complement C3 inhibition with pegcetacoplan in an iPSC-derived ALS neuromuscular junction model of neuroinflammation (P13-4.004), Neurology, 100, https://doi.org/10.1212/WNL.0000000000203916.
- Klíčová, K., Mareš, J., Menšíková, K., Kaiserová, M., Friedecký, D., Kaňovský, P., Strnad, M., and Matěj, R. (2024) Utilizing neurodegenerative markers for the diagnostic evaluation of amyotrophic lateral sclerosis, Eur. J. Med. Res., 29, https://doi.org/10.1186/s40001-023-01596-4.
- Gregory, J. M., Elliott, E., McDade, K., Bak, T., Pal, S., Chandran, S., Abrahams, S., and Smith, C. (2020) Neuronal clusterin expression is associated with cognitive protection in amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol., 46, 255-263, https://doi.org/10.1111/nan.12575.
- Desikan, R. S., Thompson, W. K., Holland, D., Hess, C. P., Brewer, J. B., Zetterberg, H., Blennow, K., Andreassen, O. A., McEvoy, L. K., Hyman, B. T., and Dale, A. M. (2014) The role of clusterin in amyloid-β-associated neurodegeneration, JAMA Neurol., 71, 180, https://doi.org/10.1001/jamaneurol.2013.4560.
- Chaplot, K., Jarvela, T. S., and Lindberg, I. (2020) Secreted chaperones in neurodegeneration, Front. Aging Neurosci., 12, https://doi.org/10.3389/fnagi.2020.00268.
- Zinkie, S., Gentil, B. J., Minotti, S., and Durham, H. D. (2013) Expression of the protein chaperone, clusterin, in spinal cord cells constitutively and following cellular stress, and upregulation by treatment with Hsp90 inhibitor, Cell Stress Chaperones, 18, 745-758, https://doi.org/10.1007/s12192-013-0427-x.
- Nizard, P., Tetley, S., Le Dréan, Y., Watrin, T., Goff, P. L., Wilson, M. R., and Michel, D. (2007) Stress-induced retrotranslocation of clusterin/ApoJ into the cytosol, Traffic, 8, 554-565, https://doi.org/10.1111/j.1600-0854. 2007.00549.x.
- Gregory, J. M., Whiten, D. R., Brown, R., Barros, T. P., Kumita, J. R., Yerbury, J. J., Satapathy, S., McDade, K., Smith, C., Luheshi, L. M., Dobson, C. M., and Wilson, M. R. (2017) Clusterin protects neurons against intracellular proteotoxicity, Acta Neuropathol. Commun., 5, 81, https://doi.org/10.1186/s40478-017-0481-1.
- Přikrylová Vranová, H., Hényková, E., Mareš, J., Kaiserová, M., Menšíková, K., Vaštík, M., Hluštík, P., Zapletalová, J., Strnad, M., Stejskal, D., and Kaňovský, P. (2016) Clusterin CSF levels in differential diagnosis of neurodegenerative disorders, J. Neurol. Sci., 361, 117-121, https://doi.org/10.1016/j.jns.2015.12.023.
- Xu, Z., Lee, A., Nouwens, A., Henderson, R. D., and McCombe, P. A. (2018) Mass spectrometry analysis of plasma from amyotrophic lateral sclerosis and control subjects, Amyotroph. Lateral Scler. Frontotemporal Degener., 19, 362-376, https://doi.org/10.1080/21678421.2018.1433689.
Arquivos suplementares
