CHEMISTRY OF THE JOINT ORIGIN AND EVOLUTION OF LIFE, DEATH, AND AGING
- Authors: Golubev A.G1
-
Affiliations:
- N.N. Petrov National Medical Research Center of Oncology
- Issue: Vol 90, No 9 (2025)
- Pages: 1268-1296
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/355095
- DOI: https://doi.org/10.31857/S0320972525090026
- ID: 355095
Cite item
Abstract
Keywords
About the authors
A. G Golubev
N.N. Petrov National Medical Research Center of Oncology
Email: bgflby@rambler.ru
St. Petersburg, Russia
References
- Gladyshev, V. N., Anderson, B., Barlit, H., Barré, B., Beck, S., Behrouz, B., Belsky, D. W., Chaix, A., Chamoli, M., Chen, B. H., Cheng, K., Chuprin, J., Churchill, G. A., Cipriano, A., Colville, A., Deelen, J., Deigin, Y., Edmonds, K. K., English, B. W., Fang, R., et al. (2024) Disagreement on foundational principles of biological aging, PNAS Nexus, 3, pgae499, https://doi.org/10.1093/pnasnexus/pgae499.
- Cohen, A. A., Legault, V., and Fülöp, T. (2020) What if there’s no such thing as “aging”, Mech. Ageing Dev., 192, 111344, https://doi.org/10.1016/j.mad.2020.111344.
- Cohen, A. A., Kennedy, B. K., Anglas, U., Bronikowski, A. M., Deelen, J., Dufour, F., Ferbeyre, G., Ferrucci, L., Franceschi, C., Frasca, D., Friguet, B., Gaudreau, P., Gladyshev, V. N., Gonos, E. S., Gorbunova, V., Gut, P., Ivanchenko, M., Legault, V., Lemaître, J.-F., Liontis, T., et al. (2020) Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework, Mech. Ageing Dev., 191, 111316, https://doi.org/10.1016/j.mad.2020.111316.
- Wang, R. L. (2025) Life is chemistry plus information, BBA Adv., 7, 100162, https://doi.org/10.1016/j.bbadva.2025.100162.
- Moody, E. R. R., Álvarez-Carretero, S., Mahendrarajah, T. A., Clark, J. W., Betts, H. C., Dombrowski, N., Szánthó, L. L., Boyle, R. A., Daines, S., Chen, X., Lane, N., Yang, Z., Shields, G. A., Szöllősi, G. J., Spang, A., Pisani, D., Williams, T. A., Lenton, T. M., and Donoghue, P. C. J. (2024) The nature of the last universal common ancestor and its impact on the early Earth system, Nat. Ecol. Evol., 8, 1654-1666, https://doi.org/10.1038/s41559-024-02461-1.
- Akbari, A., and Palsson, B. O. (2023) Metabolic homeostasis and growth in abiotic cells, Proc. Natl. Acad. Sci. USA, 120, e2300687120, https://doi.org/10.1073/pnas.2300687120.
- Mulkidjanian, A. Y., Dibrova, D. V., and Bychkov, A. Y. (2025) Origin of the RNA world in cold Hadean geothermal fields enriched in zinc and potassium: abiogenesis as a positive fallout from the moon-forming impact? Life, 15, 399, https://doi.org/10.3390/life15030399.
- Seelig, B., and Chen, I. A. (2025) Intellectual frameworks to understand complex biochemical systems at the origin of life, Nat. Chem., 17, 11-19, https://doi.org/10.1038/s41557-024-01698-4.
- Harrison, S. A., Rammu, H., Liu, F., Halpern, A., Nunes Palmeira, R., and Lane, N. (2023) Life as a guide to its own origins, Annu. Rev. Ecol. Evol. Systematics, 54, 327-350, https://doi.org/10.1146/annurev-ecolsys-110421-101509.
- Lanier, K. A., and Williams, L. D. (2017) The origin of life: models and data, J. Mol. Evol., 84, 85-92, https://doi.org/10.1007/s00239-017-9783-y.
- Saladino, R., Botta, G., Pino, S., Costanzo, G., and Di Mauro, E. (2012) Genetics first or metabolism first? The formamide clue, Chem. Soc. Rev., 41, 5526-5565, https://doi.org/10.1039/C2CS35066A.
- Pascal, R., Pross, A., and Sutherland, J. D. (2013) Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics, Open Biol., 3, 130156, https://doi.org/10.1098/rsob.130156.
- Pascal, R. (2025) Organic reactivity matters for the emergence of life: Kinetic barriers and molecular diversity are suggested as crucial factors by emerging autonomous system models, ChemSystemsChem, 7, e202400096, https://doi.org/10.1002/syst.202400096.
- Nogal, N., Sanz-Sánchez, M., Vela-Gallego, S., Ruiz-Mirazo, K., and de la Escosura, A. (2023) The protometabolic nature of prebiotic chemistry, Chem. Soc. Rev., 52, 7359-7388, https://doi.org/10.1039/d3cs00594a.
- Venturini, A., and González, J. (2024) Prebiotic synthesis of glycolaldehyde and glyceraldehyde from formaldehyde: a computational study on the initial steps of the Formose Reaction, ChemPlusChem, 89, e202300388, https://doi.org/10.1002/cplu.202300388.
- De Jong, T. J., Demertzi, A. D., Robinson, W. E., and Huck, W. T. S. (2025) Environmental history is transferred via minerals altering Formose Reaction pathways, Angewandte Chemie Int. Edit., 64, e202504659, https://doi.org/10.1002/anie.202504659.
- Omran, A., Menor-Salvan, C., Springsteen, G., and Pasek, M. (2020) The messy alkaline Formose Reaction and its link to metabolism, Life, 10, 125, https://doi.org/10.3390/life10080125.
- Lindner, S. N., and Ralser, M. (2025) The ability of pentose pathways to form all essential metabolites provides clues to the origins of metabolism, PLOS Biol., 23, e3002996, https://doi.org/10.1371/journal.pbio.3002996.
- Keller, M. A., Turchyn, A. V., and Ralser, M. (2014) Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean, Mol. Syst Biol., 10, https://doi.org/10.1002/msb.20145228.
- Keller, M. A., Kampjut, D., Harrison, S. A., and Ralser, M. (2017) Sulfate radicals enable a non-enzymatic Krebs cycle precursor, Nat. Ecol. Evolut., 1, 0083, https://doi.org/10.1038/s41559-017-0083.
- Messner, C. B., Driscoll, P. C., Piedrafita, G., De Volder, M. F. L., and Ralser, M. (2017) Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice, Proc. Natl. Acad. Sci. USA, 114, 7403-7407, https://doi.org/10.1073/pnas.1702274114.
- Ralser, M. (2018) An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life, Biochem. J., 475, 2577-2592, https://doi.org/10.1042/bcj20160866.
- Piedrafita, G., Varma, S. J., Castro, C., Messner, C., Szyrwiel, L., Griffin, J. L., and Ralser, M. (2021) Cysteine and iron accelerate the formation of ribose-5-phosphate, providing insights into the evolutionary origins of the metabolic network structure, PLOS Biol., 19, e3001468, https://doi.org/10.1371/journal.pbio.3001468.
- Ralser, M., Varma, S. J., and Notebaart, R. A. (2021) The evolution of the metabolic network over long timelines, Curr. Opin. Systems Biol., 28, 100402, https://doi.org/10.1016/j.coisb.2021.100402.
- Zimmermann, J., Bora Basar, A., and Moran, J. (2025) Nonenzymatic hydration of phosphoenolpyruvate: General conditions for hydration in protometabolism by searching across pathways, Angewandte Chemie Int. Edit., 64, e202410698, https://doi.org/10.1002/anie.202410698.
- Hirakawa, Y., Kakegawa, T., and Furukawa, Y. (2024) Hexose phosphorylation for a non-enzymatic glycolysis and pentose phosphate pathway on early Earth, Sci. Rep., 14, 264, https://doi.org/10.1038/s41598-023-50743-8.
- Kalapos, M. P., and de Bari, L. (2022) Hidden biochemical fossils reveal an evolutionary trajectory for glycolysis in the prebiotic era, FEBS Lett., 596, 1955-1968, https://doi.org/10.1002/1873-3468.14408.
- Muchowska, K. B., Varma, S. J., and Moran, J. (2020) Nonenzymatic metabolic reactions and life’s origins, Chem. Rev., 120, 7708-7744, https://doi.org/10.1021/acs.chemrev.0c00191.
- Koppayithodi, S., and Singh, N. (2025) Chemically triggered reactive coacervates show life-like budding and membrane formation, J. Am. Chem. Soc., 147, 5293-5299, https://doi.org/10.1021/jacs.4c16416.
- Tang, S., and Gao, M. (2025) The origin(s) of LUCA: Computer simulation of a new theory, Life, 15, 75, https://doi.org/10.3390/life15010075.
- Fine, J. L., and Moses, A. M. (2025) An RNA condensate model for the origin of life, J. Mol. Biol., 437, 169124, https://doi.org/10.1016/j.jmb.2025.169124.
- Prosdocimi, F., and de Farias, S. T. (2024) Major evolutionary transitions before cells: A journey from molecules to organisms, Progr. Biophys. Mol. Biol., 191, 11-24, https://doi.org/10.1016/j.pbiomolbio.2024.07.002.
- Follmann, H., and Brownson, C. (2009) Darwin’s warm little pond revisited: from molecules to the origin of life, Naturwissenschaften, 96, 1265-1292, https://doi.org/10.1007/s00114-009-0602-1.
- Phillips, S. A., and Thornalley, P. J. (1993) The formation of methylglyoxal from triose phosphates, Eur. J. Biochem., 212, 101-105, https://doi.org/10.1111/j.1432-1033.1993.tb17638.x.
- Richard, J. P. (1993) Mechanism for the formation of methylglyoxal from triosephosphates, Biochem. Soc. Transact., 21, 549-553, https://doi.org/10.1042/bst0210549.
- Mel’nichenko, I. V., Kozlova, N., and Iasnikov, A. A. (1969) Characteristics of substrates of aldolase reaction and tentative models of aldolase [in Russian], Biokhimiia, 34, 699-705.
- Vašková, J., Kováčová, G., Pudelský, J., Palenčár, D., and Mičková, H. (2025) Methylglyoxal formation – metabolic routes and consequences, Antioxidants, 14, 212, https://doi.org/10.3390/antiox14020212.
- Schalkwijk, C., and Stehouwer, C. D. (2020) Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications and other age-related diseases, Physiol. Rev., 100, 407-461, https://doi.org/10.1152/physrev.00001.2019.
- Keeling, P. J., and Doolittle, W. F. (1997) Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin, Proc. Natl. Acad. Sci. USA, 94, 1270-1275, https://doi.org/10.1073/pnas.94.4.1270.
- De la Mora-de la Mora, I., García-Torres, I., Flores-López, L. A., López-Velázquez, G., Hernández-Alcántara, G., Gómez-Manzo, S., and Enríquez-Flores, S. (2024) Methylglyoxal-induced modifications in human triosephosphate isomerase: structural and functional repercussions of specific mutations, Molecules, 29, 5047, https://doi.org/10.3390/molecules29215047.
- Roland, B. P., Stuchul, K. A., Larsen, S. B., Amrich, C. G., Vandemark, A. P., Celotto, A. M., and Palladino, M. J. (2013) Evidence of a triosephosphate isomerase non-catalytic function crucial to behavior and longevity, J. Cell Sci., 126, 3151-3158, https://doi.org/10.1242/jcs.124586.
- Munanairi, A., O’Banion, S. K., Gamble, R., Breuer, E., Harris, A. W., and Sandwick, R. K. (2007) The multiple Maillard reactions of ribose and deoxyribose sugars and sugar phosphates, Carbohydrate Res., 342, 2575-2592, https://doi.org/10.1016/j.carres.2007.08.003.
- Uceda, A. B., Mariño, L., Casasnovas, R., and Adrover, M. (2024) An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition, Biophys. Rev., 16, 189-218, https://doi.org/10.1007/s12551-024-01188-4.
- Bunn, H. F., and Higgins, P. J. (1981) Reaction of monosaccharides with proteins: possible evolutionary significance, Science, 213, 222-224, https://doi.org/10.1126/science.12192669.
- Trub, A. G., and Hirschey, M. D. (2018) Reactive acyl-CoA species modify proteins and induce carbon stress, Trends Biochem. Sci., 43, 369-379, https://doi.org/10.1016/j.tibs.2018.02.002.
- James, A. M., Smith, C. L., Smith, A. C., Robinson, A. J., Hoogewijs, K., and Murphy, M. P. (2018) The causes and consequences of nonenzymatic protein acylation, Trends Biochem. Sci., 43, 921-932, https://doi.org/10.1016/j.tibs.2018.07.002.
- Baldensperger, T., Eggen, M., Kappen, J., Winterhalter, P. R., Pfirrmann, T., and Glomb, M. A. (2020) Comprehensive analysis of posttranslational protein modifications in aging of subcellular compartments, Sci. Rep., 10, 7596, https://doi.org/10.1038/s41598-020-64265-0.
- Imai, S. I., and Guarente, L. (2016) It takes two to tango: NAD+ and sirtuins in aging/longevity control, NPJ Aging Mech. Dis., 2, 16017, https://doi.org/10.1038/npjamd.2016.17.
- Martin, W. F. (2020) Older than genes: The acetyl CoA pathway and origins, Front. Microbiol., 11, 817, https://doi.org/10.3389/fmicb.2020.00817.
- Weiss, M. C., Preiner, M., Xavier, J. C., Zimorski, V., and Martin, W. F. (2018) The last universal common ancestor between ancient Earth chemistry and the onset of genetics, PLOS Genet., 14, e1007518, https://doi.org/10.1371/journal.pgen.1007518.
- Jacob, F. (1977) Evolution and tinkering, Science, 196, 1161-1166, https://doi.org/10.1126/science.860134.
- An, R., Jia, Y., Wan, B., Zhang, Y., Dong, P., Li, J., and Liang, X. (2015) Non-enzymatic depurination of nucleic acids: factors and mechanisms, PLOS One, 9, e115950, https://doi.org/10.1371/journal.pone.0115950.
- Barnes, D. E., and Lindahl, T. (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells, Annu. Rev. Genet., 38, 445-476, https://doi.org/10.1146/annurev.genet.38.072902.092448.
- Prorok, P., Grin, I. R., Matkarimov, B. T., Ishchenko, A. A., Laval, J., Zharkov, D. O., and Saparbaev, M. (2021) Evolutionary origins of DNA repair pathways: role of oxygen catastrophe in the emergence of DNA glycosylases, Cells, 10, 1591, https://doi.org/10.3390/cells10071591.
- Clarke, S. (2003) Aging as war between chemical and biochemical processes: Protein methylation and the recognition of age-damaged proteins for repair, Ageing Res. Rev., 2, 263-285, https://doi.org/10.1016/S15681637(03)00011-4.
- Golubev, A. (2009) How could the Gompertz-Makeham law evolve, J. Theor. Biol., 258, 1-17, https://doi.org/10.1016/j.jtbi.2009.01.009.
- Schmerling, C., Kouril, T., Snoep, J., Bräsen, C., and Siebers, B. (2022) Enhanced underground metabolism challenges life at high temperature – metabolic thermoadaptation in hyperthermophilic Archaea, Curr. Opin. Systems Biol., 30, 100423, https://doi.org/10.1016/j.coisb.2022.100423.
- Lerma-Ortiz, C., Jeffryes, J. G., Cooper, A. J. L., Niehaus, T. D., Thamm, A. M. K., Frelin, O., Aunins, T., Fiehn, O., de Crécy-Lagard, V., Henry, C. S., and Hanson, A. D. (2016) ‘Nothing of chemistry disappears in biology’: the Top 30 damage-prone endogenous metabolites, Biochem. Soc. Transact., 44, 961-971, https://doi.org/10.1042/bst20160073.
- Mc Auley, M. T. (2024) The evolution of ageing: classic theories and emerging ideas, Biogerontology, 26, 6, https://doi.org/10.1007/s10522-024-10143-5.
- Kitani, K., and Ivy, G. O. (2003) “I thought, thought, thought for four months in vain and suddenly the idea came” – an interview with Denham and Helen Harman, Biogerontology, 4, 401-412, https://doi.org/10.1023/B:BGEN.0000006561.15498.68.
- De Lorenzo, V. (2015) It’s the metabolism, stupid! Environ. Microbiol. Rep., 7, 18-19, https://doi.org/10.1111/1758-2229.12223.
- Golubev, A., Hanson, A. D., and Gladyshev, V. N. (2017) Non-enzymatic molecular damage as a prototypic driver of aging, J. Biol. Chem., 292, 6029-6038, https://doi.org/10.1074/jbc.R116.751164.
- Golubev, A. G. (1996) The other side of metabolism: a review, Biochemistry (Moscow), 61, 1443-1460.
- Williams, R. T. (1967) Comparative patterns of drug metabolism, Fed. Proc., 26, 1029-1039.
- Sun, J., Jeffryes, J. G., Henry, C. S., Bruner, S. D., and Hanson, A. D. (2017) Metabolite damage and repair in metabolic engineering design, Metab. Engin., 44, 150-159, https://doi.org/10.1016/j.ymben.2017.10.006.
- De Crécy-Lagard, V., Haas, D., and Hanson, A. D. (2018) Newly-discovered enzymes that function in metabolite damage-control, Curr. Opin. Chem. Biol., 47, 101-108, https://doi.org/10.1016/j.cbpa.2018.09.014.
- Bommer, G. T., Van Schaftingen, E., and Veiga-da-Cunha, M. (2020) Metabolite repair enzymes control metabolic damage in glycolysis, Trends Biochem. Sci., 45, 228-243, https://doi.org/10.1016/j.tibs.2019.07.004.
- Haas, D., Thamm, A. M., Sun, J., Huang, L., Sun, L., Beaudoin, G. A. W., Wise, K. S., Lerma-Ortiz, C., Bruner, S. D., Breuer, M., Luthey-Schulten, Z., Lin, J., Wilson, M. A., Brown, G., Yakunin, A. F., Kurilyak, I., Folz, J., Fiehn, O., Glass, J. I., Hanson, A. D., et al. (2022) Metabolite damage and damage control in a minimal genome, mBio, 13, e01630-22, https://doi.org/10.1128/mbio.01630-22.
- Jeffryes, J. G., Lerma-Ortiz, C., Liu, F., Golubev, A., Niehaus, T. D., Elbadawi-Sidhu, M., Fiehn, O., Hanson, A. D., Tyo, K. E. J., and Henry, C. S. (2021) Chemical-damage MINE: A database of curated and predicted spontaneous metabolic reactions, Metab. Engin., 69, 302-312, https://doi.org/10.1016/j.ymben.2021.11.009.
- Lin, C. I., McCarty, R. M., and Liu, H. W. (2017) The enzymology of organic transformations: a survey of name reactions in biological systems, Angewandte Chemie Int. Edit., 56, 3446-3489, https://doi.org/10.1002/anie.201603291.
- Mironova, R., Niwa, T., Handzhiyski, Y., Sredovska, A., and Ivanov, I. (2005) Evidence for non-enzymatic glycosylation of Escherichia coli chromosomal DNA, Mol. Microbiol., 55, 1801-1811, https://doi.org/10.1111/j.1365-2958.2005.04504.x.
- Mironova, R., Niwa, T., Hayashi, H., Dimitrova, R., and Ivanov, I. (2001) Evidence for non-enzymatic glycosylation in Escherichia coli, Mol. Microbiol., 39, 1061-1068, https://doi.org/10.1046/j.1365-2958.2001.02304.x.
- De Lorenzo, V., Sekowska, A., and Danchin, A. (2014) Chemical reactivity drives spatiotemporal organisation of bacterial metabolism, FEMS Microbiol. Rev., 39, 96-119, https://doi.org/10.1111/1574-6976.12089.
- Lilja, E. E., and Johnson, D. R. (2017) Metabolite toxicity determines the pace of molecular evolution within microbial populations, BMC Evolut. Biol., 17, 52, https://doi.org/10.1186/s12862-017-0906-2.
- Yang, Y., Santos, A. L., Xu, L., Lotton, C., Taddei, F., and Lindner, A. B. (2019) Temporal scaling of aging as an adaptive strategy of Escherichia coli, Sci. Adv., 5, eaaw2069, https://doi.org/10.1126/sciadv.aaw2069.
- Gompertz, B. (1825) XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S., Phil. Transact. Roy. Soc. L., 115, 513-583, https://doi.org/10.1098/rstl.1825.0026.
- Olshansky, S. J., and Carnes, B. A. (1997) Ever since Gompertz, Demography, 34, 1-15.
- Strehler, B. L., and Mildvan, A. S. (1960) General theory of mortality and aging, Science, 132, 14-21, https://doi.org/10.1126/science.132.3418.14.
- Strehler, B. L. (2000) Understanding aging, Meth. Mol. Med., 38, 1-19, https://doi.org/10.1385/1-59259-070-5:1.
- De Paepe, M., and Taddei, F. (2006) Viruses’ life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages, PLOS Biol., 4, e193, https://doi.org/10.1371/journal.pbio.0040193.
- Golubev, A. (2025) Distinguishing the intrinsic and extrinsic causes of changes in human mortality by examining life-table aging rate (LAR) trajectories through the lens of generalized Gompertz-Makeham law, Biogerontology, 26, 71, https://doi.org/10.1007/s10522-025-10210-5.
- Golubev, A. (2019) A 2D analysis of correlations between the parameters of the Gompertz–Makeham model (or law?) of relationships between aging, mortality, and longevity, Biogerontology, 20, 799-821, https://doi.org/10.1007/s10522-019-09828-z.
- Hamilton, W. D. (1966) The moulding of senescence by natural selection, J. Theor. Biol., 12, 12-45, https://doi.org/10.1016/0022-5193(66)90184-6.
- Rose, M. R., Rauser, C. L., Mueller, L. D., and Benford, G. (2006) A revolution for aging research, Biogerontology, 7, 269-277, https://doi.org/10.1007/s10522-006-9001-6.
- Makeham, W. M. (1860) On the law of mortality and the construction of annuity tables, J. Inst. Actuaries, 8, 301-310.
- Golubev, A. (2024) An underappreciated peculiarity of late-life human mortality kinetics assessed through the lens of a generalization of the Gompertz-Makeham law, Biogerontology, 25, 479-490, https://doi.org/10.1007/s10522-023-10079-2.
- Golubev, A. (2024) Invariances in relations between aging, exposure to external hazards, and mortality reflected in life table aging rate (LAR) patterns examined through the lens of generalized Gompertz–Makeham law, Biogerontology, 25, 1079-1096, https://doi.org/10.1007/s10522-024-10123-9.
- Box, G. E. P., and Draper, N. R. (1987) Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, NY.
- Stroustrup, N. (2018) Measuring and modeling interventions in aging, Curr. Opin. Cell Biol., 55, 129-138, https://doi.org/10.1016/j.ceb.2018.07.004.
- Boteva, E., Doychev, K., Kirilov, K., Handzhiyski, Y., Tsekovska, R., Gatev, E., and Mironova, R. (2024) Deglycation activity of the Escherichia coli glycolytic enzyme phosphoglucose isomerase, Int. J. Biol. Macromolecules, 257, 128541, https://doi.org/10.1016/j.ijbiomac.2023.128541.
- Van Schaftingen, E., Collard, F., Wiame, E., and Veiga-da-Cunha, M. (2012) Enzymatic repair of Amadori products, Amino Acids, 42, 1143-1150, https://doi.org/10.1007/s00726-010-0780-3.
- Heremans, I. P., Caligiore, F., Gerin, I., Bury, M., Lutz, M., Graff, J., Stroobant, V., Vertommen, D., Teleman, A. A., Schaftingen, E. V., and Bommer, G. T. (2022) Parkinson’s disease protein PARK7 prevents metabolite and protein damage caused by a glycolytic metabolite, Proc. Nat. Acad. Sci. USA, 119, e2111338119, https://doi.org/10.1073/pnas.2111338119.
- Akhmadi, A., Yeskendir, A., Dey, N., Mussakhmetov, A., Shatkenova, Z., Kulyyassov, A., Andreeva, A., and Utepbergenov, D. (2024) DJ-1 protects proteins from acylation by catalyzing the hydrolysis of highly reactive cyclic 3-phosphoglyceric anhydride, Nat. Comm., 15, 2004, https://doi.org/10.1038/s41467-024-46391-9.
- Burcham, P. C. (1999) Internal hazards: baseline DNA damage by endogenous products of normal metabolism, Mutat. Res. Genet. Toxicol. Environ. Mutagenesis, 443, 11-36, https://doi.org/10.1016/S1383-5742(99)00008-3.
- Shamsi, T. N., Athar, T., Parveen, R., and Fatima, S. (2017) A review on protein misfolding, aggregation and strategies to prevent related ailments, Int. J. Biol. Macromolecules, 105, 993-1000, https://doi.org/10.1016/j.ijbiomac.2017.07.116.
- Bednarska, N. G., Schymkowitz, J., Rousseau, F., and Van Eldere, J. (2013) Protein aggregation in bacteria: the thin boundary between functionality and toxicity, Microbiology, 159, 1795-1806, https://doi.org/10.1099/mic.0.069575-0.
- Pohl, C., and Dikic, I. (2019) Cellular quality control by the ubiquitin-proteasome system and autophagy, Science, 366, 818-822, https://doi.org/10.1126/science.aax3769.
- Tuğrul, M., and Steiner, U. K. (2025) Demographic consequences of damage dynamics in single-cell aging, Phys. Rev. Res., 7, 013327, https://doi.org/10.1103/PhysRevResearch.7.013327.
- Florea, M. (2017) Aging and immortality in unicellular species, Mech. Ageing Develop., 167, 5-15, https://doi.org/10.1016/j.mad.2017.08.006.
- Moore, D. L., and Jessberger, S. (2017) Creating age asymmetry: consequences of inheriting damaged goods in mammalian cells, Trends Cell Biol., 27, 82-92, https://doi.org/10.1016/j.tcb.2016.09.007.
- Ayala, J. D., Schroeter, E. R., and Schweitzer, M. H. (2024) Porphyrin-based molecules in the fossil record shed light on the evolution of life, Minerals, 14, 201, https://doi.org/10.3390/min14020201.
- Martin, W. F., Bryant, D. A., and Beatty, J. T. (2017) A physiological perspective on the origin and evolution of photosynthesis, FEMS Microbiol. Rev., 42, 205-231, https://doi.org/10.1093/femsre/fux056.
- Raymond, J., and Segrè, D. (2006) The effect of oxygen on biochemical networks and the evolution of complex life, Science, 311, 1764-1767, https://doi.org/10.1126/science.1118439.
- Jiang, Y.-Y., Kong, D.-X., Qin, T., Li, X., Caetano-Anollés, G., and Zhang, H.-Y. (2012) The impact of oxygen on metabolic evolution: a chemoinformatic investigation, PLoS Comput. Biol., 8, e1002426, https://doi.org/10.1371/journal.pcbi.1002426.
- Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298-300, https://doi.org/10.1093/geronj/11.3.298.
- Harman, D. (2003) The free radical theory of aging, Antiox. Redox Signal., 5, 557-561, https://doi.org/10.1089/152308603770310202.
- Kirkwood, T. B. L., and Kowald, A. (2012) The free-radical theory of ageing – older, wiser and still alive, BioEssays, 34, 692-700, https://doi.org/10.1002/bies.201200014.
- Sies, H., Berndt, C., and Jones, D. P. (2017) Oxidative stress, Annu. Rev. Biochem., 86, 715-748, https://doi.org/10.1146/annurev-biochem-061516-045037.
- Sies, H., and Jones, D. P. (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat. Rev. Mol. Cell Biol., 21, 363-383, https://doi.org/10.1038/s41580-020-0230-3.
- Huie, R. E., and Neta, P. (2002) Chemistry of reactive oxygen species, in Reactive Oxygen Species in Biological Systems: An Interdisciplinary Approach, Springer US, Boston, MA, pp. 33-73.
- Mrnjavac, N., Nagies, F. S. P., Wimmer, J. L. E., Kapust, N., Knopp, M. R., Trost, K., Modjewski, L., Bremer, N., Mentel, M., Esposti, M. D., Mizrahi, I., Allen, J. F., and Martin, W. F. (2024) The radical impact of oxygen on prokaryotic evolution – enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third, FEBS Lett., 598, 1692-1714, https://doi.org/10.1002/1873-3468.14906.
- Koppenol, W. H., and Sies, H. (2024) Was hydrogen peroxide present before the arrival of oxygenic photosynthesis? The important role of iron(II) in the Archean ocean, Redox Biol., 69, 103012, https://doi.org/10.1016/j.redox.2023.103012.
- Fischer, W. W., Hemp, J., and Valentine, J. S. (2016) How did life survive Earth’s great oxygenation? Curr. Opin. Chem. Biol., 31, 166-178, https://doi.org/10.1016/j.cbpa.2016.03.013.
- Baum, B., and Spang, A. (2023) On the origin of the nucleus: a hypothesis, Microbiol. Mol. Biol. Rev., 87, e0018621, doi: 10.1128/mmbr.00186-21.
- Richards, T. A., Eme, L., Archibald, J. M., Leonard, G., Coelho, S. M., de Mendoza, A., Dessimoz, C., Dolezal, P., Fritz-Laylin, L. K., Gabaldón, T., Hampl, V., Kops, G. J. P. L., Leger, M. M., Lopez-Garcia, P., McInerney, J. O., Moreira, D., Muñoz-Gómez, S. A., Richter, D. J., Ruiz-Trillo, I., Santoro, A. E., et al. (2024) Reconstructing the last common ancestor of all eukaryotes, PLOS Biol., 22, e3002917, https://doi.org/10.1371/journal.pbio.3002917.
- Barja, G. (2014) The mitochondrial free radical theory of aging, Progr. Mol. Biol. Translat. Sci., 127, 1-27, https://doi.org/10.1016/b978-0-12-394625-6.00001-5.
- Haas, R. H. (2019) Mitochondrial dysfunction in aging and diseases of aging, Biology, 8, 48, https://doi.org/10.3390/biology8020048.
- Akbari, M., Kirkwood, T. B. L., and Bohr, V. A. (2019) Mitochondria in the signaling pathways that control longevity and health span, Ageing Res. Rev., 54, 100940, https://doi.org/10.1016/j.arr.2019.100940.
- Hong, S. Y., Ng, L. T., Ng, L. F., Inoue, T., Tolwinski, N. S., Hagen, T., and Gruber, J. (2016) The role of mitochondrial non-enzymatic protein acylation in ageing, PLOS One, 11, e0168752, https://doi.org/10.1371/journal.pone.0168752.
- Shay, J. W., and Wright, W. E. (2019) Telomeres and telomerase: three decades of progress, Nat. Rev. Genet., 20, 299-309, https://doi.org/10.1038/s41576-019-0099-1.
- Tomasetti, C., Li, L., and Vogelstein, B. (2017) Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention, Science, 355, 1330-1334, https://doi.org/10.1126/science.aaf9011.
- Cavalier-Smith, T. (2017) Origin of animal multicellularity: precursors, causes, consequences – the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion, Phil. Transact. Roy. Soc. B Biol. Sci., 372, 20150476, https://doi.org/10.1098/rstb.2015.0476.
- Vincent, M. (2017) Chapter 16 – atavism theory – an introductory discourse, in Ecology and Evolution of Cancer (Ujvari, B., Roche, B., and Thomas, F., eds.), Academic Press, pp. 211-218.
- Lineweaver, C. H., Bussey, K. J., Blackburn, A. C., and Davies, P. C. W. (2021) Cancer progression as a sequence of atavistic reversions, BioEssays, 43, 2000305, https://doi.org/10.1002/bies.202000305.
- Capp, J.-P., and Thomas, F. (2022) From developmental to atavistic bet-hedging: how cancer cells pervert the exploitation of random single-cell phenotypic fluctuations, BioEssays, 44, 2200048, https://doi.org/10.1002/bies.202200048.
- Kesteloot, H. E. C., and Verbeke, G. (2005) On the relationship between all-cause, cardiovascular, cancer and residual mortality rates with age, Eur. J. Cardiovasc. Prevent. Rehabilit., 12, 175-181, https://doi.org/10.1097/01.hjr.0000164691.57823.eb.
- De Magalhaes, J. P. (2013) How ageing processes influence cancer, Nat. Rev. Cancer, 13, 357-365, https://doi.org/10.1038/nrc3497.
- Green, D. R., and Fitzgerald, P. (2016) Just so stories about the evolution of apoptosis, Curr. Biol., 26, R620-r627, https://doi.org/10.1016/j.cub.2016.05.023.
- Lewis, K. (2000) Programmed death in bacteria, Microbiol. Mol. Biol. Rev., 64, 503-514, https://doi.org/10.1128/mmbr.64.3.503-514.2000.
- Gorgoulis, V., Adams, P. D., Alimonti, A., Bennett, D. C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., Gil, J., Hara, E., Krizhanovsky, V., Jurk, D., Maier, A. B., Narita, M., Niedernhofer, L., Passos, J. F., Robbins, P. D., Schmitt, C. A., et al. (2019) Cellular senescence: defining a path forward, Cell, 179, 813-827, https://doi.org/10.1016/j.cell.2019.10.005.
- Kowald, A., Passos, J. F., and Kirkwood, T. B. L. (2020) On the evolution of cellular senescence, Aging Cell, 19, e13270, https://doi.org/10.1111/acel.13270.
- Gal, H., Majewska, J., and Krizhanovsky, V. (2022) The intricate nature of senescence in development and cell plasticity, Semin. Cancer Biol., 87, 214-219, https://doi.org/10.1016/j.semcancer.2021.01.004.
- De Magalhães, J. P. (2024) Cellular senescence in normal physiology, Science, 384, 1300-1301, https://doi.org/10.1126/science.adj7050.
- Diwan, B., Yadav, R., Goyal, R., and Sharma, R. (2024) Sustained exposure to high glucose induces differential expression of cellular senescence markers in murine macrophages but impairs immunosurveillance response to senescent cells secretome, Biogerontology, 25, 627-647, https://doi.org/10.1007/s10522-024-10092-z.
- Bertelli, P. M., Pedrini, E., Hughes, D., McDonnell, S., Pathak, V., Peixoto, E., Guduric-Fuchs, J., Stitt, A. W., and Medina, R. J. (2022) Long term high glucose exposure induces premature senescence in retinal endothelial cells, Front. Physiol., 13, 929118, https://doi.org/10.3389/fphys.2022.929118.
- Gems, D., and Kern, C. C. (2022) Is “cellular senescence” a misnomer? GeroScience, 44, 2461-2469, https://doi.org/10.1007/s11357-022-00652-x.
- Golubev, A. G., Khrustalev, S., and Butov, A. A. (2003) An in silico investigation into the causes of telomere length heterogeneity and its implications for the Hayflick limit, J. Theor. Biol., 225, 153-170, https://doi.org/10.1016/s0022-5193(03)00229-7.
- Cole, D. B., Mills, D. B., Erwin, D. H., Sperling, E. A., Porter, S. M., Reinhard, C. T., and Planavsky, N. J. (2020) On the co-evolution of surface oxygen levels and animals, Geobiology, 18, 260-281, doi: https://doi.org/10.1111/gbi.12382.
- Jaisson, S., Pietrement, C., and Gillery, P. (2018) Chapter One – Protein Carbamylation: Chemistry, Pathophysiological Involvement, and Biomarkers, in Advances in Clinical Chemistry (Makowski, G. S., ed.), Elsevier, pp. 1-38.
- Haus, J. M., Carrithers, J. A., Trappe, S. W., and Trappe, T. A. (2007) Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle, J. Appl. Physiol., 103, 2068-2076, https://doi.org/10.1152/japplphysiol.00670.2007.
- Poundarik, A. A., Wu, P. C., Evis, Z., Sroga, G. E., Ural, A., Rubin, M., and Vashishth, D. (2015) A direct role of collagen glycation in bone fracture, J. Mechan. Behav. Biomed. Mater., 52, 120-130, https://doi.org/10.1016/j.jmbbm.2015.08.012.
- Farris, P. K. (2013) Skin aging, glycation and glycation inhibitors, in Cosmeceuticals and Cosmetic Practice, John Wiley & Sons, Ltd., pp. 173-183.
- Fan, W., Adebowale, K., Váncza, L., Li, Y., Rabbi, M. F., Kunimoto, K., Chen, D., Mozes, G., Chiu, D. K.-C., Li, Y., Tao, J., Wei, Y., Adeniji, N., Brunsing, R. L., Dhanasekaran, R., Singhi, A., Geller, D., Lo, S. H., Hodgson, L., Engleman, E. G., et al. (2024) Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver, Nature, 626, 635-642, https://doi.org/10.1038/s41586-023-06991-9.
- Golubev, A. G. (2022) Carving the senescent phenotype by the chemical reactivity of catecholamines: an integrative review, Ageing Res. Rev., 75, 101570, https://doi.org/10.1016/j.arr.2022.101570.
- Bilinski, T., Bylak, A., and Zadrag-Tecza, R. (2016) Principles of alternative gerontology, Aging (Albany NY), 8, 589-602, https://doi.org/10.18632/aging.100931.
- Watanabe, H., Hoang, V. T., Mättner, R., and Holstein, T. W. (2009) Immortality and the base of multicellular life: lessons from cnidarian stem cells, Semin. Cell Develop. Biol., 20, 1114-1125, https://doi.org/10.1016/j.semcdb.2009.09.008.
- Schaible, R., Scheuerlein, A., Dańko, M. J., Gampe, J., Martínez, D. E., and Vaupel, J. W. (2015) Constant mortality and fertility over age in Hydra, Proc. Natl. Acad. Sci. USA, 112, 15701-15706, https://doi.org/10.1073/pnas.1521002112.
- De Magalhães, J. P., Stevens, M., and Thornton, D. (2017) The business of anti-aging science, Trends Biotechnol., 35, 1062-1073, https://doi.org/10.1016/j.tibtech.2017.07.004.
- Rattan, S. I. S. (2020) Naive extrapolations, overhyped claims and empty promises in ageing research and interventions need avoidance, Biogerontology, 21, 415-421, https://doi.org/10.1007/s10522-019-09851-0.
- Gems, D., Okholm, S., and Lemoine, M. (2024) Inflated expectations: the strange craze for translational research on aging, EMBO reports, 25, 3748-3752, https://doi.org/10.1038/s44319-024-00226-2.
- Golubev, A. G. (2018) Commentary: is life extension today a Faustian bargain? Front. Med., 5, 73, https://doi.org/10.3389/fmed.2018.00073.
- Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398-411, https://doi.org/10.1111/j.1558-5646.1957.tb02911.x.
- Gaillard, J.-M., and Lemaître, J.-F. (2017) The Williams’ legacy: a critical reappraisal of his nine predictions about the evolution of senescence, Evolution, 71, 2768-2785, https://doi.org/10.1111/evo.13379.
- Austad, S. N., and Hoffman, J. M. (2018) Is antagonistic pleiotropy ubiquitous in aging biology? Evolut. Med. Publ. Health, 2018, 287-294, https://doi.org/10.1093/emph/eoy033.
- Trumble, B. C., Charifson, M., Kraft, T., Garcia, A. R., Cummings, D. K., Hooper, P., Lea, A. J., Eid Rodriguez, D., Koebele, S. V., Buetow, K., Beheim, B., Minocher, R., Gutierrez, M., Thomas, G. S., Gatz, M., Stieglitz, J., Finch, C. E., Kaplan, H., and Gurven, M. (2023) Apolipoprotein-e4 is associated with higher fecundity in a natural fertility population, Sci. Adv., 9, eade9797, https://doi.org/10.1126/sciadv.ade9797.
- Madimenos, F. C. (2015) An evolutionary and life-history perspective on osteoporosis, Annu. Rev. Anthropol., 44, 189-206, https://doi.org/10.1146/annurev-anthro-102214-013954.
- Lambeth, J. D. (2007) NOX enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy, Free Rad. Biol. Med., 43, 332-347, https://doi.org/10.1016/j.freeradbiomed.2007.03.027.
- Belarbi, K., Cuvelier, E., Destee, A., Gressier, B., and Chartier-Harlin, M. C. (2017) NADPH oxidases in Parkinson’s disease: a systematic review, Mol. Neurodegener., 12, 84, https://doi.org/10.1186/s13024-017-0225-5.
- Mc Auley, M. T., Guimera, A. M., Hodgson, D., Mcdonald, N., Mooney, K. M., Morgan, A. E., and Proctor, C. J. (2017) Modelling the molecular mechanisms of aging, Biosci. Rep., 37, BSR20160177, https://doi.org/10.1042/bsr20160177.
- Golubev, A., Hanson, A. D., and Gladyshev, V. N. (2017) A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging, Antioxid. Redox Signal., 29, 1003-1017, https://doi.org/10.1089/ars.2017.7105.
- Golubev, A. G. (2019) Why and how do we age? A single answer to two questions, Adv. Gerontol., 9, 1-14.
- Lemoine, M. (2020) Defining aging, Biol. Philos., 35, 46, https://doi.org/10.1007/s10539-020-09765-z.
- Golubev, A. G. (2021) An essay on the nominal vs. real definitions of aging, Biogerontology, 22, 441-457, https://doi.org/10.1007/s10522-021-09926-x.
- Gladyshev, V. N. (2013) The origin of aging: imperfectness-driven non-random damage defines the aging process and control of lifespan, Trends Genet., 29, 506-512, https://doi.org/10.1016/j.tig.2013.05.004.
- López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2023) Hallmarks of aging: An expanding universe, Cell, 186, 243-278, https://doi.org/10.1016/j.cell.2022.11.001.
- Goh, J., Wong, E., Soh, J., Maier, A. B., and Kennedy, B. K. (2023) Targeting the molecular & cellular pillars of human aging with exercise, FEBS J., 290, 649-668, https://doi.org/10.1111/febs.16337.
- Golubev, A. G. (2022) Chapter 14. Quantitative ethics and esthetics of the spans of life and aging, in Natural History of the Spans of Life and Aging [in Russian], Eko-Vektor, Saint Petersburg.
- Iannuzzi, V., Narboux-Nême, N., Lehoczki, A., Levi, G., and Giuliani, C. (2025) Stay social, stay young: a bioanthropological outlook on the processes linking sociality and ageing, GeroScience, 47, 721-744, https://doi.org/10.1007/s11357-024-01416-5.
- Luoto, S. (2019) An updated theoretical framework for human sexual selection: from ecology, genetics, and life history to extended phenotypes, Adapt. Hum. Behav. Physiol., 5, 48-102, https://doi.org/10.1007/s40750-018-0103-6.
- Davison, R., and Gurven, M. (2022) The importance of elders: extending Hamilton’s force of selection to include intergenerational transfers, Proc. Natl. Acad. Sci. USA, 119, e2200073119, https://doi.org/10.1073/pnas.2200073119.
Supplementary files


