Inhibitors of galactonolactone oxidase from Trypanosoma cruzi based on allylpolyalkoxybenzenes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Inhibition of the biosynthetic pathways of compounds essential for T. cruzi is considered by researchers as one of the possible mechanisms of action of potential drugs against Chagas disease. As one of these mechanisms, we consider inhibition of galactonolactone oxidase from T. cruzi (TcGAL), which catalyzes the final step in the synthesis of vitamin C, an antioxidant that T. cruzi is unable to assimilate from outside and must synthesize itself. In this work, for the first time, a class of effective inhibitors of TcGAL was found - allylbenzenes from plant sources. A non-competitive mechanism of action of apiol has been established and it has been found that natural allylpolyalkoxybenzenes (APAB) - apiol, dillapiol, etc. are effective inhibitors of TcGAL with IC50 = 20-130 µM. It was found that the conjugation of APAB with triphenylphosphonium, which ensures the selective delivery of biologically active substances to mitochondria, makes it possible to increase the efficiency and/or the maximum percentage of inhibition compared to unmodified APAB.

About the authors

A. A Chudin

Faculty of Chemistry, Lomonosov Moscow State University

Email: helenakoudriachova@yandex.ru
119991 Moscow, Russia

I. D Zlotnikov

Faculty of Chemistry, Lomonosov Moscow State University

Email: helenakoudriachova@yandex.ru
119991 Moscow, Russia

S. S Krylov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: helenakoudriachova@yandex.ru
119991 Moscow, Russia

V. V Semenov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: helenakoudriachova@yandex.ru
119991 Moscow, Russia

E. V Kudryashova

Faculty of Chemistry, Lomonosov Moscow State University

Email: helenakoudriachova@yandex.ru
119991 Moscow, Russia

References

  1. García-Huertas, P., and Cardona-Castro, N. (2021) Advances in the treatment of Chagas disease: promising new drugs, plants and targets, Biomed. Pharmacother., 142, 112020, doi: 10.1016/j.biopha.2021.112020.
  2. Lepesheva, G. I., Villalta, F., and Waterman, M. R. (2011) Targeting Trypanosoma cruzi sterol-14α-demethylase (CYP51), 75, 65-87, doi: 10.1016/b978-0-12-385863-4.00004-6.
  3. Kudryashova, E. V., Leferink, N. G. H., Slot, I. G. M., and van Berkel, W. J. H. (2011) Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C, Biochim. Biophys. Acta, 1814, 545-552, doi: 10.1016/j.bbapap.2011.03.001.
  4. Martinez-Peinado, N., Cortes-Serra, N., Torras-Claveria, L., Pinazo, M.-J., Gascon, J., Bastida, J., and Alonso-Padilla, J. (2020) Amaryllidaceae alkaloids with anti-Trypanosoma cruzi activity, Parasites Vectors, 13, doi: 10.1186/s13071-020-04171-6.
  5. Chudin, A. A., and Kudryashova, E. V. (2022) Improved enzymatic assay and inhibition analysis of redox membranotropic enzymes, AtGALDH and TcGAL, using a reversed micellar system, Analytica, 3, 36-53, doi: 10.3390/analytica3010004.
  6. Zheoat, A. M., Alenezi, S., Elmahallawy, E. K., Ungogo, M. A., Alghamdi, A. H., Watson, D. G., Igoli, J. O., Gray, A. I., de Koning, H. P., and Ferro, V. A. (2021) Antitrypanosomal and antileishmanial activity of chalcones and flavanones from Polygonum salicifolium, Pathogens, 10, 175, doi: 10.3390/pathogens10020175.
  7. Aponte, J. C., Verástegui, M., Málaga, E., Zimic, M., Quiliano, M., Vaisberg, A. J., Gilman, R. H., and Hammond, G. B. (2008) Synthesis, cytotoxicity, and anti-Trypanosoma cruzi activity of new chalcones, J. Med. Chem., 51, 6230-6234, doi: 10.1021/jm800812k.
  8. Tsyganov, D. V., Samet, A. V., Silyanova, E. A., Ushkarov, V. I., Varakutin, A. E., Chernysheva, N. B., Chuprov-Netochin, R. N., Khomutov, A. A., Volkova, A. S., Leonov, S. V., Semenova, M. N., and Semenov, V. V. (2022) Synthesis and antiproliferative activity of triphenylphosphonium derivatives of natural allylpolyalkoxybenzenes, ACS Omega, 7, 3369-3383, doi: 10.1021/acsomega.1c05515.
  9. Zlotnikov, I. D., Belogurova, N. G., Krylov, S. S., Semenova, M. N., Semenov, V. V., and Kudryashova, E. V. (2022) Plant alkylbenzenes and terpenoids in the form of cyclodextrin inclusion complexes as antibacterial agents and levofloxacin synergists, Pharmaceuticals, 15, 861, doi: 10.3390/ph15070861.
  10. Parise-Filho, R., Pasqualoto, K. F. M., Magri, F. M. M., Ferreira, A. K., da Silva, B. A. V. G., Damião, M. C. F. C. B., Tavares, M. T., Azevedo, R. A., Auada, A. V. V., Polli, M. C., and Brandt, C. A. (2012) Dillapiole as antileishmanial agent: discovery, cytotoxic activity and preliminary SAR studies of dillapiole analogues, Arch. Pharm., 345, 934-944, doi: 10.1002/ardp.201200212.
  11. Laubasarova, I. R., Khailova, L. S., Nazarov, P. A., Rokitskaya, T. I., Silachev, D. N., Danilina, T. I., Plotnikov, E. Y., Denisov, S. S., Kirsanov, R. S., Korshunova, G. A., Kotova, E. A., Zorov, D. B., and Antonenko, Y. N. (2020) Linking 7-nitrobenzo-2-oxa-1,3-diazole (NBD) to triphenylphosphonium yields mitochondria-targeted protonophore and antibacterial agent, Biochemistry (Moscow), 85, 1578-1590, doi: 10.1134/S000629792012010X.
  12. Хмельницкий Ю. Л., Левашов А. В., Клячко Н. Л., Мартинек К. (1984) Микрогетерогенная среда для химических (ферментативных) реакций на основе коллоидного раствора воды в органическом растворителе, Усп. Хим., 53, 545-565.
  13. Klyachko, N. L., Shchedrina, V. A., Efimov, A. V., Kazakov, S. V., Gazaryan, I. G., Kristal, B. S., and Brown, A. M. (2005) pH-dependent substrate preference of pig heart lipoamide dehydrogenase varies with oligomeric state: response to mitochondrial matrix acidification, J. Biol. Chem., 280, 16106-16114, doi: 10.1074/jbc.M414285200.
  14. Morais, T. R., Conserva, G., Varela, M. T., Costa-Silva, T. A., Thevenard, F., Ponci, V., Fortuna, A., Falcão, A. C., Tempone, A. G., Fernandes, J., and Lago, J. (2020) Improving the drug-likeness of inspiring natural products - evaluation of the antiparasitic activity against Trypanosoma cruzi through semi-synthetic and simplified analogues of licarin A, Sci. Rep., 10, 5467, doi: 10.1038/s41598-020-62352-w.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies