Evaluation of the Toxicity of Microplastics in the Supralittoral of the Barents Sea using Test Objects of Different Trophic Levels

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The influence of different types of microplastics (MP) and ash after burning a mixture of macroplastics selected in the supralittoral of the Barents Sea on the development of traditional test objects of the culture of the green microalgae Scenedesmus quadricauda and the culture of cladocerans Daphnia magna in chronic experiments was studied. In terms of inhibition of algal growth at a concentration of 3 mg/L MP, the PU sample showed the highest toxicity, followed by HDPE (white), HDPE (red) and contact EPS in descending order of toxicity. PP was non-toxic. Ash in the concentration range of 0.01-1000 mg/L did not significantly inhibit the growth of Scenedesmus quadricauda. For Daphnia magna a more expressed decrease in the average linear size was noted with the addition of intact EPS, and the stimulation of fertility was significantly higher in the presence of contact EPS. When comparing the effect of intact and contact PU on D. magna, the death of all individuals under the influence of intact PU was found, while adding PU, survival remained at the control level. MP particles and ash affect the trophic activity of daphnia when fed with chlorella, but this effect does not lead to changes in fertility and growth during long-term observation.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Lazareva

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: lazanna1998@mail.ru
Ресей, Moscow

A. Rak

Lomonosov Moscow State University

Email: lazanna1998@mail.ru
Ресей, Moscow

D. Gershkovich

Lomonosov Moscow State University

Email: lazanna1998@mail.ru
Ресей, Moscow

O. Ilyina

Lomonosov Moscow State University

Email: lazanna1998@mail.ru
Ресей, Moscow

V. Ipatova

Lomonosov Moscow State University

Email: lazanna1998@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Конюхов И.В., Воробьева О.В. 2013. Определение трофической активности рачков Daphnia magna Straus на флуориметре Mega-2 // Вода: химия и экология. № 12. С. 79.
  2. Лазарева А.М., Ипатова В.И., Ильина О.В. и др. 2021. Токсическое влияние микрочастиц пластика на культуру Scenedesmus quadricauda: взаимодействие между микрочастицами пластика и водорослью // Вестн. Москов. ун-та. Сер. 16: Биология. Т. 76. № 4. С. 225.
  3. Alimi O.S., Farner Budarz J., Hernandez L.M. et al. 2018. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport // Environ. Sci. Technol. V. 52. № 4. P. 1704. https://doi.org/10.1021/acs.est.7b05559
  4. Aljaibachi R., Callaghan A. 2018. Impact of polystyrene microplastics on Daphnia magna mortality and reproduction in relation to food availability // PeerJ 6:e4601. https://doi.org/.org/10.7717/peerj.4601
  5. An D., Na J., Song J., Jung J. 2021. Size-dependent chronic toxicity of fragmented polyethylene microplastics to Daphnia magna // Chemosphere. V. 271. P. 129591. https://doi.org/.org/10.1016/j.chemosphere.2021.129591
  6. Besseling E., Wang B., Lürling M. et al. 2014. Nanoplastic affects growth of S. obliquus and reproduction of D. magna // Environ. Sci. Technol. V. 48. № 20. P. 12336. https://doi.org/.org/10.1021/es503001d
  7. Cau A., Avio C.G., Dessì C. et al. 2020. Benthic crustacean digestion can modulate the environmental fate of microplastics in the deep sea // Environ. Sci. Technol. V. 54. № 8. P. 4886. https://doi.org/10.1021/acs.est.9b07705
  8. Chae Y., Kim D., Kim S.W. et al. 2018. Trophic transfer and individual impact of nanosized polystyrene in a four-species freshwater food chain // Sci. ReP. V. 8. Р. 284. https://doi.org/.org/10.1038/s41598-017-18849-y
  9. Debroas D., Mone A., Ter Halle A. 2019. Plastics in the North Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders // Sci. Total Environ. V. 599. P. 1222. https://doi.org/.org/10.1016/j.scitotenv.2017.05.059
  10. Eltemsah Y.S., Bøhn T. 2019. Acute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia magna // Environ. Pollut. V. 254 (PtA). Р. 112919. https://doi.org/.org/10.1016/j.envpol.2019.07.087
  11. Jaikumar G., Brun N.R., Vijver M.G. et al. 2019. Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure // Environ. Pollut. V. 249. P. 638. https://doi.org/.org/10.1016/j.envpol.2019.03.085
  12. Li C., Busquets R., Campos L.C. 2020. Assessment of microplastics in freshwater systems: A review // Sci. Total Environ. V. 707. P. 135578. https://doi.org/.org/10.1016/j.scitotenv.2019.135578
  13. Long M., Paul-Pont I., Hégaret H. et al. 2017. Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation // Environ. Pollut. V. 228. P. 454. https://doi.org/10.1016/j.envpol.2017.05.047
  14. Mao Y., Ai H., Chen Y. et al. 2018. Phytoplankton response to polystyrene microplastics: perspective from an entire growth period // Chemosphere. V. 208. P. 59. https://doi.org/10.1016/j.chemosphere.2018.05.170
  15. Michels J., Stippkugel A., Lenz M. et al. 2018. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles // Proc. Royal Soc. B: Biol. Sci. V. 285. Р. 1885. https://doi.org/.org/10.1098/rspb.2018.1203
  16. Nakao T., Aozasa O., Ohta S. et al. 2006. Formation of toxic chemicals including dioxin-related compounds by combustion from a small home waste incinerator // Chemosphere. V. 62. P. 459. https://doi.org/.org/10.1016/j.chemosphere.2005.04.060
  17. Nolte T.M., Hartmann N.B., Kleijn J.M. et al. 2017. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption // Aquat. Toxicol. V. 183. P. 11. https://doi.org/.org/10.1016/j.aquatox.2016.12.005
  18. Ogonowski M., Schür C., Jarsén Å. et al. 2016. The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna // PLOS ONE. V. 11(5). Р. e0155063. https://doi.org/.org/10.1371/journal.pone.0155063
  19. Prata J.C., da Costa J.P., Lopes I. et al. 2019. Effects of microplastics on microalgae populations: A critical review // Sci. Total Environ. V. 665. P. 400. https://doi.org/.org/10.1016/j.scitotenv.2019.02.132
  20. Rist S., Baun A., Hartmann N.B. 2017. Ingestion of micro- and nanoplastics in Daphnia magna — Quantification of body burdens and assessment of feeding rates and reproduction // Environ. Pollut. V. 228. P. 398. https://doi.org/.org/10.1016/j.envpol.2017.05.048
  21. Rosato A., Barone M., Negroni A. et al. 2020. Microbial colonization of different microplastic types and biotransformation of sorbed PCBs by a marine anaerobic bacterial community // Sci. Total Environ. V. 705. Р. 135790. https://doi.org/.org/10.1016/j.scitotenv.2019.135790
  22. Tunali M., Uzoefuna E., Tunali M.M. et al. 2020. Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris // Sci. Total Environ. V. 743. Р. 140479. https://doi.org/.org/10.1016/j.scitotenv.2020.140479
  23. Valavanidis A., Iliopoulos N., Gotsis G. et al. 2008. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic // J. Hazard. Mater. V. 156. № 1–3. P. 277. https://doi.org/.org/10.1016/j.jhazmat.2007.12.019
  24. Wang Z., Fu D., Gao L. et al. 2021. Aged microplastics decrease the bioavailability of coexisting heavy metals to microalga Chlorella vulgaris // Ecotoxicol. Environ. Saf. V. 217. Р. 112199. https://doi.org/.org/10.1016/j.ecoenv.2021.112199
  25. Yokota K., Waterfield H., Hastings C. et al. 2017. Finding the missing piece of the aquatic plastic pollution puzzle: interaction between primary producers and microplastics // Limnol., Oceanogr. Lett. V. 2. № 4. P. 91. https://doi.org/.org/10.1002/lol2.10040
  26. Zhang C., Chen X., Wang J. et al. 2017. Toxic effects of microplastics on marine microalgae Skeletonema costatum: interactions between microplastics and algae // Environ. Pollut. V. 220. P. 1282. https://doi.org/10.1016/j.envpol.2016.11.005

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Рис. 1. Относительная численность клеток Scenedesmus quadricauda (% контроля) в присутствии разных видов микропластика. 1 – контроль, 2 – EPS контактный, 3 – EPS интактный, 4 – HDPE красный, 5 – PP, 6 – PU, 7 – HDPE белый.

Жүктеу (171KB)
3. Рис. 2. Изменение относительной численности клеток S. quadricauda (% контроля) в присутствии зольного остатка смеси разных видов макропластика. 1 – контроль, 2 – 0.01 мг/л, 3 – 0.1 мг/л, 4 – 1 мг/л, 5 – 10 мг/л, 6 – 100 мг/л, 7 – 1000 мг/л.

Жүктеу (169KB)
4. Рис. 3. Выживаемость Daphnia magna в среде с частицами старого и свежего EPS (100 мг/л). 1 – контроль, 2 – EPS свежий, 3 – EPS старый.

Жүктеу (100KB)

© The Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>