A method for quantifying of aquatic insects emergence on the basis of the drift samples

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the well-known factof the short-term metamorphosis of amphibiotic insects when emerging out directly from the water bodies’ surface, the author proposes a calculation method for such departure rate estimating from lotic systems based on drift collections. The calculation is made taking into account the area of the bottom site (1 m2) adjacent to the observation section. In passing, the problem of the discrepancy between the efforts spent on data collecting and the meager volume of data obtained is considered, which is especially relevant when working on small watercourses, where the emergence of some species is scattered and low-intensity.

About the authors

M. V. Astakhov

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: mvastakhov@mail.ru
Vladivostok, Russia

References

  1. Астахов М.В. 2019. Дрифт беспозвоночных в двух водотоках о. Кунашир (Курильский архипелаг) // Биология внутр. вод. № 4. С. 60. https://doi.org/10.1134/S0320965219040223
  2. Астахов М.В.2025. Выбор меры центральной тенденции при обработке гидробиологических данных (мини-обзор) // Чтения памяти В.Я. Леванидова. Вып. 11. С. 9. https://doi.org/10.25221/levanidov.11.02
  3. Байкова О.Я. 1968. О нахождении впервые в СССР самцов поденок родаPseudocloeon(Ephemeroptera) // Энтомологическое обозрение. Т. 47. № 3. С. 523.
  4. Барышев И.А. 2008. Суточная динамика вылета ручейниковAgapetus ochripesCurt и Hydroptila tineoidesDalm. в условиях Крайнего Севера (р. Индера, Кольский полуостров, Россия) // Экология. № 5. С. 398.
  5. Борисова Н.В., Ручин А.В., Хапугин А.А., Семишин Г.Б.2023.Неметрический многомерный масштабный анализ состава трихоптерофауны двух охраняемых территорий (Республика Мордовия, Россия) // Биология внутр. вод. № 1. С. 5. https://doi.org/10.31857/S0320965223010023
  6. Константинов А.С. 1958. Биология хирономид и их разведение // Тр. Саратов. отд. ВНИОРХ. Т. 5.
  7. Лакин Г.Ф. 1990. Биометрия. М.: Высш. шк.
  8. Силина А.Е., Сущик Н.Н., Гладышев М.И. и др. 2023. Вылет амфибиотических насекомых из старого бобрового пруда в долине Верхнего Хопра в лесостепной зоне // Сиб. экол. журн. № 6. С. 872.https://doi.org/10.15372/SEJ20230612
  9. Тиунова Т.М. 1993. Поденки реки Кедровая и их эколого-физиологические характеристики. Владивосток: Дальнаука.
  10. Bollinger E., Zubrod J.P., Englert D. et al. 2023. The influence of season, hunting mode, and habitat specialization on riparian spiders as key predators in the aquatic-terrestrial linkage // Sci. Rep. V. 13. Article 22950. https://doi.org/10.1038/s41598-023-50420-w
  11. Corbet P.S. 1966. Diel periodicities of emergence and oviposition in riverine Trichoptera // Can. Entomol. V. 98. Iss. 10. P. 1025. https://doi.org/10.4039/Ent981025-10
  12. Davies I.J. 1984. Sampling aquatic insect emergence // A manual on methods for the assessment of secondary productivity in fresh waters. IBP Handbook. V. 17. Oxford; UK: Blackwell Sci. P. 161.
  13. Edmunds G.F., McCafferty W.P. 1988. The mayfly subimago // Annu. Rev. Entomol. V. 33. P. 509. https://doi.org/10.1146/annurev.en.33.010188.002453
  14. Fehlinger L., Mathieu-Resuge M., Pilecky M. et al. 2023. Export of dietary lipids via emergent insects from eutrophic fishponds // Hydrobiologia. V. 850. P. 3241. https://doi.org/10.1007/s10750-022-05040-2
  15. Fremling C.R.1960. Biology and possible control of nuisance caddisflies of the Upper Mississippi River // Res. Bull. Iowa Sta. Univ. Sci-Technol. № 483. P. 855.
  16. Friesen M.K., Flannagan J.F., Laufersweiler P.M. 1980. Diel emergence patterns of some mayflies (Ephemeroptera) of the Roseau River (Manitoba, Canada) // Advances in Ephemeroptera biology. Boston, MA: Springer. P. 287. https://doi.org/10.1007/978-1-4613-3066-0_23
  17. Gladyshev M.I., Gladysheva E.E., Sushchik N.N. 2019. Preliminary estimation of the export of omega-3 polyunsaturated fatty acids from aquatic to terrestrial ecosystems in biomes via emergent insects // Ecol. Complex. V. 38. P. 140. https://doi.org/10.1016/j.ecocom.2019.03.007
  18. Haddow A.J. 1954. Studies of the biting-habits of African mosquitos. An appraisal of methods employed, with special reference to the twenty-four-hour catch // Bull. Entomоl. Res. V. 45. № 1. P. 199. https://doi.org/10.1017/S0007485300026900
  19. Hamilton A.L. 1969. A new type of emergence trap for collecting stream insects // J. Fish Res. Board Can. V. 26. № 6. P. 1685. https://doi.org/10.1139/f69-155
  20. Humpesch U.H., Elliott J.M. 1984. Zur Ökologie adulter Ephemeropteren Österreichs // Arch. Hydrobiol. Bd 101. H. 1/2. S. 179.
  21. Kjellberg G. 1972. Autekologiska studier överLeptophlebia vespertina(Ephemeroptera) i en mindre skogstjärn 1966–1968 // Entomol. Tidskr. V. 93. P. 1.
  22. Laske S.M., Gurney K.E.B., Koch J.C. et al. 2021. Arctic insect emergence timing and composition differs across thaw ponds of varying morphology // Arct. Antarct. Alp. Res. V. 53. № 1. P. 110. https://doi.org/10.1080/15230430.2021.1902249
  23. Lepori F. 2022. Stream pollution causes aggregation of wintering insectivorous birds through increased aquatic emergence // Front. Ecol. Evol. V. 10. Article 926529. https://doi.org/10.3389/fevo.2022.926529
  24. LeSage L. Harrison A.D. 1979. Improved traps and techniques for the study of emerging aquatic insects // Entomol. News. V. 90. P. 65.
  25. McCafferty W.P., Wigle M.J., Waltz R.D. 1994. Systematics and biology ofAcentrella turbida(McDunnough) (Ephemeroptera: Baetidae) // Pan-Pac. Entomol. V. 70. № 4. P. 301.
  26. McCauley V.J.E. 1976. Efficiency of a trap for catching and retaining insects emerging from standing water // Oikos. V. 27. № 2. P. 339. https://doi.org/10.2307/3543917
  27. Menzel R., Geweiler D., Sass A. et al. 2018. Nematodes as important source for omega-3 long-chain fatty acids in the soil food web and the impact in nutrition for higher trophic levels // Front. Ecol. Evol. V. 6. Article 96. https://doi.org/10.3389/fevo.2018.00096
  28. Mundie J.H. 1971a. The diel drift of Chironomidae in an artificial stream and its relation to the diet of coho salmon fry,Oncorhynchus kisutch(Waulbaum) // Can. Entomol. V. 103. № 3. P. 289. https://doi.org/10.4039/Ent103289-3
  29. Mundie J.H. 1971b. Techniques for sampling emerging aquatic insects // A manual on methods for the assessment of secondary productivity in fresh waters. Oxford: Blackwell Sci. Publ. P. 80.
  30. Ohler K., Schreiner V.C., Reinhard L. et al. 2024. Land use alters cross-ecosystem transfer of high value fatty acids by aquatic insects // Environ. Sci. Eur. V. 36. Article 10. https://doi.org/10.1186/s12302-023-00831-3
  31. Perng J.-J., Lee Y.-S., Wang J.-P. 2005. Emergence patterns of the mayflyCloeon marginale(Ephemeroptera:Baetidae) in a tropical monsoon forest wetland in Taiwan // Aquat. Insects. V. 27. № 1. P. 1. https://doi.org/10.1080/01650420512331387892
  32. Percival E., Whitehead H. 1926. Observations on the biology of the mayfly,Ephemera danicaMüll. // Proc. Leeds Phil. Lit. Soc. V. 1. Part 3. P. 136.
  33. Riederer R.A.A. 1985. Emergence behaviour of some mayflies and stoneflies (Insecta: Ephemeroptera and Plecoptera) // Verh. Int. Verein. Limnol. V. 22. № 5. P. 3260. https://doi.org/10.1080/03680770.1983.11897871
  34. Robinson C.T., Buser T. 2007. Density-dependent life history differences in a stream mayfly (Deleatidium) inhabiting permanent and intermittent stream reaches // N.Z.J. Mar. Freshwater Res. V. 41. № 3. P. 265. https://doi.org/10.1080/00288330709509914
  35. Shipley J.R., Twining C.W., Mathieu-Resuge M. et al. 2022. Climate change shifts the timing of nutritional flux from aquatic insects // Curr. Biol. V. 32. № 6. P. 1342. https://doi.org/10.1016/j.cub.2022.01.057
  36. Sprules W.M. 1947. An ecological investigation of stream insects in Algonquin Park, Ontario // Univ. Tor. Stud. Biol. Ser. № 56. P. 1.
  37. Thomas E. 1970. Die Oberflächendrift eines lappländischen Fliessgewässers // Oikos Suppl. V. 13. P. 45.
  38. Williams C.B. 1937. The use of logarithms in the interpretation of certain entomological problems // Ann. Appl. Biol. V. 24. № 2. P. 404. https://doi.org/10.1111/j.1744-7348.1937.tb05042.x
  39. Zar J.H. 2010. Biostatistical analysis // Upper Saddle River.N.Y.: Prentice Hall.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».