Модельные вариации толщины коры Марса и Венеры методом чисел Лява

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На основе данных топографии и гравитационного поля рассчитаны модельные вариации толщины коры Марса и Венеры методом чисел Лява. Метод учитывает подстройку планетных недр к нагрузкам на поверхности и в недрах. Численное моделирование проводится с использованием разложения по сферическим гармоникам данных топографии и гравитационного поля до 90-й степени и порядка для Марса и до 70-й для Венеры. Рельеф границы кора–мантия предполагает частичную изостатическую компенсацию по Эйри. Модель коры Марса согласуется с интервалом значений толщины коры под областью установки станции миссии InSight в юго-западной части равнины Элизий, полученным по результатам сейсмического эксперимента. Проведено сравнение с имеющимися глобальными моделями коры Марса и Венеры.

Об авторах

А. В. Батов

Институт физики Земли им. О.Ю. Шмидта РАН; Институт проблем управления им. В.А. Трапезникова РАН

Email: batov@ipu.ru
Россия, Москва; Россия, Москва

Т. И. Менщикова

Институт физики Земли им. О.Ю. Шмидта РАН

Email: batov@ipu.ru
Россия, Москва

Т. В. Гудкова

Институт физики Земли им. О.Ю. Шмидта РАН

Автор, ответственный за переписку.
Email: gudkova@ifz.ru
Россия, Москва

Список литературы

  1. Батов А.В., Гудкова Т.В., Жарков В.Н. Оценки напряженного состояния недр Марса под локальными топографическими структурами // Геофизич. исслед. 2018. Т. 19. № 3. С. 5–22.
  2. Батов А.В., Гудкова Т.В., Жарков В.Н. Негидростатические напряжения в недрах Марса для различных моделей неоднородной упругости // Физика Земли. 2019. № 4. С. 166–180.
  3. Гудкова Т.В., Жарков В.Н. Модели внутреннего строения землеподобной Венеры // Астрон. вестн. 2020. Т. 54. № 1. С. 24–32. (Gudkova T.V., Zharkov V.N. Models of the Internal Structure of the Earth-like Venus // Sol. Syst. Res. 2020. V. 54. № 1. P. 20–27.)
  4. Гудкова Т.В., Батов А.В., Жарков В.Н. Модельные оценки негидростатических напряжений в коре и мантии Марса: 1. Двухуровневая модель // Астрон. вестн. 2017. Т. 51. № 6. С. 490–511. (Gudkova T.V., Batov A.V., Zharkov V.N. Model estimates of non-hydrostatic stresses in the Martian crust and mantle: 1. Two-level model // Sol. Syst. Res. 2017. V. 51. № 6. P. 457–478.)
  5. Гудкова Т.В., Степанова И.Э., Батов А.В. Модельные оценки плотностных неоднородностей в приповерхностных слоях Марса в зоне установки сейсмометра миссии InSight // Астрон. вестн. 2020. Т. 54. № 1. С. 18–23. (Gudkova T.V., Stepanova I.E., Batov A.V. Density anomalies in subsurface layers of Mars: Model estimates for the site of the InSight mission seismometer // Sol. Syst. Res. 2020. V. 54. № 1. P. 15–19.)
  6. Жарков В.Н., Марченков К.И., Любимов В.М. О длинноволновых касательных напряжениях в литосфере и мантии Венеры // Астрон. вестн. 1986. Т. 20. № 3. С. 202–211.
  7. Жарков В.Н., Марченков К.И. О корреляции касательных напряжениях в литосфере Венеры с поверхностными структурами // Астрон. вестн. 1987. Т. 21. № 2. С. 170–175.
  8. Жарков В.Н., Гудкова Т.В. Построение модели внутреннего строения Марса// Астрон. вестн. 2005. Т. 39. № 5. С. 1–32. (Zharkov V.N., Gudkova T.V. Construction of Martian Interior Model // Sol. Syst. Res. 2005. V. 39. № 5. P. 343–373.)
  9. Жарков В.Н., Гудкова Т.В. О модельной структуре гравитационного поля Марса // Астрон. вестн. 2016. Т. 50. С. 250–267. (Zharkov V.N., Gudkova T.V. On model structure of gravity field of Mars // Sol. Syst. Res. 2016. V. 50. P. 250– 267.)
  10. Жарков В.Н., Гудкова Т.В. О параметрах землеподобной модели Венеры // Астрон. вестн. 2019. Т. 53. № 1 С. 3–6. (Zharkov V.N., Gudkova T.V. On Parameters of the Earth-like model of Venus // Sol. Syst. Res. 2019. V. 53. № 1 P. 1–4.)
  11. Манукин А.Б., Казанцева О.С., Калинников И.И., Матюнини В.П., Савкина Н.Ф., Тоньшев А.К., Черногорова Н.А. Сейсмометр для наблюдений на Марсе // Космич. исслед. 2021. Т. 5. С. 418–427.
  12. Марченков К.И., Любимов В.М., Жарков В.Н. Расчет нагрузочных коэффициентов для заглубленных аномалий плотности // Докл. АН СССР. 1984. Т. 15. № 2. С. 583–586.
  13. Марченков К.И., Жарков В.Н. О рельефе границы кора-мантия и напряжениях растяжения–сжатия в коре Венеры // Письма в Астрон. журн. 1989. Т. 15. № 2. С. 182–190.
  14. Менщикова Т.И., Гудкова Т.В., Жарков В.Н. Анализ данных топографии и гравитационного поля землеподобной Венеры // Астрон. вестник. 2021. Т. 55. № 1. С. 13–21. (Menshchikova T.I., Gudkova T.V., Zharkov V.N. Analysis of the Topography and Gravity Data for the Earth-like Venus // Sol. Syst. Res. 2021. V. 55. № 1. P. 11–19.)
  15. Менщикова Т.И., Гудкова Т.В. Нагрузочные числа Лява для различных моделей неоднородной упругости Венеры // Геофизич. исслед. 2021. Т. 22. № 4. С. 24–42.
  16. Babeiko A.Yu., Zharkov V.M. Martian crust: a modeling approach // Phys. Earth and Planet. Inter. 2000. V. 117. P. 421–435.
  17. Banerdt W.B., Smrekar S.E., Banfield D., Giardini D., Golombek M., Johnson C.L., et al. Initial results from the InSight mission on Mars // Nature Geosci. 2020. V. 13. C. 183–189.
  18. Baratoux D., Samuel H., Michaut C., Toplis M.J., Monnereau M., Wieczorek M., Garcia R., Kurita K. Petrological constraints on the density of the Martian crust // J. Geophys. Res.: Planets. 2014. V. 119. P. 1707–1727.
  19. Beuthe M. Isostasy with Love: 1. Elastic equilibrium // Geophys. J. Int. 2021. V. 225. P. 2157–2193.
  20. Breuer D., Moore W.B. Dynamics and thermal history of the terrestrial planets, the Moon and Io // Treatise on geophysics. Planets and Moons. 2015. V. 10 / Ed. Spohn T. Amsterdam: Elsevier, 2015. P. 255–305.
  21. Broquet A., Wieczorek M.A. The gravitational signature of Martian volcanoes // J. Geophys. Res.: Planets. 2019. V. 124. P. 2054–2086.
  22. Dumoulin C., Tobie G., Verhoeven O., Rambaux N. Tidal constraints on the interior of Venus // J. Geophys. Res.: Planets. 2017. V. 122 (6). P. 1338–1352.
  23. Gascioli G., Hensley S., De Marchi F., Breuer D., Durante D., Racioppa P., Iess L., Mazarico E., Smrekar S.E. The determination of the rotational state and interior structure of Venus with VERITAS // Planet. Sci. J. 2021. V. 2. P. 220–232.
  24. Genova A., Goossens S., Lemoine F.G., Mazarico E., Neumann G.A., Smith D.E., Zuber M.T. Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science // Icarus. 2016. V. 272. P. 228–245.
  25. Ghail R.C., Hall D., Mason P.J., Herrick R.R., Carter L.M., Williams Ed. VenSAR on EnVision: Taking earth observation radar to Venus // Int. J. Appl. Earth Observation and Geoinformation. 2018. V. 64. P. 365–376.
  26. Greff-Leffitz M., Legros L. Some remarks about the degree-one deformation of the Earth // Geophys. J. Int. 1997. V. 131. P. 699–723.
  27. Gudkova T.V., Stepanova I.E., Batov A.V., Shchepetilov A.V. Modified method S-, and R-approximations in solving the problems of Mars’s morphology // Inverse Problems in Sci. and Eng. 2021. V. 29. № 6. P. 790–804.
  28. Hansen V.L., Banks B.K., Ghent R.R. Tessera terrain and crustal plateaus // Venus. Geology. 1999. V. 27 (12). P. 1071–1074.
  29. Ivanov M.A., Head J.W. Global geological map of Venus // Planet. and Space Sci. 2011. V. 59 (13). P. 1559–1600.
  30. James P., Zuber M., Phillips R. Crustal thickness and support of topography on Venus // J. Geophys. Res. 2013. V. 118. P. 859–875.
  31. Jimenez-Dìaz A., Ruiz J., Kirby J.F., Romeo I., Tejero R., Capote R. Lithopsheric structure of Venus from gravity and topography // Icarus. 2015. V. 260. P. 215–231.
  32. Johnson C.L., Mittelholz A., Langlais B., Russell C.T., Ansan V., Banfield D., et al. Crustal and time-varying magnetic fields at the InSight landing site on Mars // Nature Geosci. 2020. V. 13. (3). P. 199–204.
  33. Knapmeyer-Endrun B., Panning M.P., Bissig F., Joshi R., Khan A., Kim D, et al. Thickness and structure of the Martian crust from InSight seismic data // Science. 2021. V. 373. P. 438–443.
  34. Konopliv A.S., Banerdt W.B., Sjogren W.L. Venus gravity: 180th degree and order model // Icarus. 1999. V. 139. P. 3–18. https://doi.org/10.1006/icar.1999.6086
  35. Konopliv A.S., Park R.S., Folkner W.M. An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data // Icarus. 2016. V. 274. P. 253–260.
  36. Kremic T., Ghail R., Gilmore M., Hunter G., Kiefer W., Limaye S., Pauken M., Tolbert C., Wilson C. Long-duration Venus lander for seismic and atmospheric science // Planet. and Space Sci. 2020. V. 190. id.104961
  37. Lognonné P., Banerdt W.B., Giardini D., Pike W.T., Christensen U., Laudet P., et al. SEIS: Insight’s Seismic Experiment for Internal Structure of Mars // Space Sci. Rev. 2019. V. 215 (1). id. 12.
  38. Lognonné P., Banerdt W.B., Pike W.T., Giardini D., Christensen U., Garsia R.F., et al. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data // Nature Geosci. 2020. V. 13. P. 213–220.
  39. McGovern P.J., Solomon S.C., Smith D.E., Zuber M.T., Simons M., Wieczorek M.A., Phillips R.J., Neumann G.A., Aharonson O., Head J.W. Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution // J. Geophys. Res. 2002. V. 107. id. 5136.
  40. Neumann G.A., Zuber M.T., Wieczorek M.A., McGovern P.J., Lemoine F.G., Smith D.E. Crustal structure of Mars from gravity and topography // J. Geophys. Res. 2004. V. 109. id. E08002 (18 p.)
  41. Nimmo F., Tanaka K. Early crustal evolution of Mars // Annu. Rev. Earth and Planet. Sci. 2005. V. 33. P. 133–161. https://doi.org/10.1146/annurev.earth.33.092203.122637
  42. O’Rourke J.G., Korenaga J. Thermal evolution of Venus with argon degassing // Icarus. 2015. V. 260. P. 128–140.
  43. Pan L., Quantin C., Tauzin B., Michaut C., Golombek M., Lognonné P., Grindrod P., Langlais B., Gudkova T., Stepanova I., Rodriguez S., Lucas A. Crust heterogeneities and structure at the dichotomy boundary in western Elysium Planitia and implications for InSight lander // Icarus. 2020. V. 338. id. 113511.
  44. Pauer M., Breuer D. Constraints on the maximum crustal density from gravity–topography modeling: Applications to the southern highlands of Mars // EPSL. 2008. V. 276. P. 253–261.
  45. Plesa A.-C., Padovan S., Tosi N., Breuer D., Grott M., Wieczorek M.A., Spohn T., Smrekar S.E., Banerdt W.B. The thermal state and interior structure of Mars // Geophys. Res. Lett. 2018. V. 45. P. 12198–12209.
  46. Rappaport N.J., Konopliv A.S., Kucinskas A.B. An improved 360 degree and order model of Venus topography // Icarus. 1999. V. 139. P. 19–31.
  47. Rosenblatt P., Dumoulin C., Marty J.-C., Genova A. Determination of Venus’ interior structure with EnVision // Remote Sens. 2021. V. 13. id. 1624 (14 p.).
  48. Smith D.E., Zuber M.T., Frey H.V., Garvin J.B., Head J.W., Muhleman D.O., et al. Mars Orbiter Laser Altimeter: Experimental summary after the first year of global mapping of Mars // J. Geophys. Res. 2001. V. 106 (E10). P. 23689–23722.
  49. Stähler S.C., Khan A., Banerdt W.B., Lognonné Ph., Giardini D., Ceylan S., et al. Seismic detection of the martian core // Science. 2021. V. 373. P. 443–448.
  50. Taylor S.R., McLennan S.M. Planetary crusts: Their composition, origin and evolution. Cambridge: Cambridge Univ. Press, 2009. 378 p.
  51. Tenzer R., Eshagh M., Jin S. Martian sub-crustal stress from gravity and topographic models // Earth and Planet. Sci. Lett. 2015. V. 425. P. 84–92.
  52. Yang A., Huang J., Wei D. Separation of dynamic and isostatic components of the Venusian gravity and topography and determination of the crustal thickness of Venus // Planet. and Space. Sci. 2016. V. 129. P. 24–31.
  53. Wieczorek M.A., Zuber M.T. Thickness of the Martian crust: improved constraints from geoid-to-topography ratios // J. Geophys. Res. 2004. V. 109. id. E01009.
  54. Wieczorek M.A. Gravity and topography of the terrestrial planets // Treatise on geophysics. Planets and Moons. 2015. V. 10 / Ed. Spohn T. Amsterdam: Elsevier, 2015. P. 153–193.
  55. Wieczorek M. Create crustal thickness maps of planets from gravity and topography (ctplanet). 2021. https://doi.org/10.5281/zenodo.4439426
  56. Wieczorek M.A., Beuthe M., Rivoldini A., Van Hoolst T. Hydrostatic interfaces in bodies with nonhydrostatic lithospheres // J. Geophys. Res.: Planets. 2019. V. 124. P. 1410–1432.
  57. Zampa L.S., Tenzer R., Eshagh M., Pitonak M. Evidence of mantle upwelling / downwelling and localized subduction on Venus from the body-force vector analysis // Planet. and Space Sci. 2018. V. 157. P. 48–62.
  58. Zelenyi L.M., Korablev O.I., Rodionov D.S., Novikov B.S., Marchenkov K.I., Andreev O.N., Larionov E.V. Scientific objectives of the scientific equipment of the landing platform of the ExoMars-2018 mission // Sol. Syst. Res. 2015. V. 49. № 7. P. 509–517.
  59. Zharkov V.N., Solomatov V.S. Models of the thermal evolution of Venus // Venus geology, geochemistry and geophysics research results from the USSR / Eds Barsukov V.L., Basilevsky A.T., Volkov V.P., Zharkov V.N. Univ. Arizona Press, 1992. P. 280–319.
  60. Zharkov V.N., Gudkova T.V., Molodensky S.M. On models of Mars’ interior and amplitudes of forced nutations. 1. The effects of deviation of Mars from its equilibrium state on the flattening of the core-mantle boundary // PEPI. 2009. V. 172. P. 324–334.

Дополнительные файлы


© А.В. Батов, Т.И. Менщикова, Т.В. Гудкова, 2022

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах