Non-gravitational Mechanism of Comets’ Ejection from the Oort Cloud Due to Cometary Outbursts

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Cometary nuclei located in the Oort cloud accumulate high concentration of radicals in surface layers under cosmic ray irradiation at low temperatures. Recombination of radicals induced by an increase in the surface temperature of a comet by a close passing star, O/B stars, or nearby supernovae leads to the heating of the ice layer with the releasing of volatiles from the amorphous ice. When high gas pressure builds up beneath the cometary surface, dust and gas are ejected. The resulting jet of gas and dust can change the comet’s orbit in the Oort cloud. The studied non-gravitational mechanism can effectively expel comets with a radius of ≤1 km from the Oort cloud into the inner part of the Solar system. The total effect of cometary outbursts on the stability of cometary orbits during the evolution of Solar system can result in a decrease in the number of long-period small-radius comets.

Негізгі сөздер

Авторлар туралы

D. Belousov

Ioffe Institute, 194021, St. Petersburg, Russia

Email: dom.999.bel@gmail.com
Россия, Санкт-Петербург

A. Pavlov

Ioffe Institute, 194021, St. Petersburg, Russia

Хат алмасуға жауапты Автор.
Email: anatoli.pavlov@mail.ioffe.ru
Россия, Санкт-Петербург

Әдебиет тізімі

  1. Bar-Nun A., Herman G., Laufer D., Rappaport M.L. Trapping and release of gases by water ice and implications for icy bodies // Icarus. 1985. V. 63. P. 317–332.
  2. Belousov D., Pavlov A., Tsurkov D., Lomasov V. Irradiation effects in comet ice: A source of cometary cryovolcanism // 53th Conf. Lunar and Planet. Sci. 2022. Abs. #1244.
  3. Boe B., Jedicke R., Meech K.J., Wiegert P., Weryk R.J., Chambers K.C., Denneau L., Kaiser N., Kudritzki R.-P., Magnier E.A., Wainscoat R.J., Waters C. The orbit and size-frequency distribution of long period comets observed by Pan-STARRS1 // Icarus. 2019. V. 333. P. 252–272.
  4. Carpenter J.M. Thermally activated release of stored chemical energy in cryogenic media // Nature. 1987. V. 330. P. 358–360.
  5. Duncan M., Quinn T., Tremaine S. The formation and extent of the Solar system comet cloud // Astron. J. 1987. V. 94. P. 1330–1338.
  6. Fernandez J.A. Long-period comets and the Oort cloud // Earth, Moon, and Planets. 2000. V. 89. P. 325–343.
  7. Fernandez J.A. Comets: Nature, Dynamics, Origin and their Cosmogonical Relevance // Astrophys. and Space Sci. Library / Eds: Burton W.B. 2005. 383 p.
  8. Fulle M., Lazzarin M., La Forgia F., Zakharov V.V., Bertini I., Epifani E.M., Ammannito E., Buzzoni A., Capria M.T., Carbognani A., Da Deppo V., Della Corte V., Fiscale S., Frattin E., Inno L., and 22 co-authors. Comets beyond 4 AU: How pristine are Oort nuclei? // Mon. Notic. Roy. Astron. Soc. 2022. V. 513. P. 5377–5386.
  9. Gronkowski P. The search for a cometary outbursts mechanism: A comparison of various theories // Astron. Nachr. 2007. V. 328. P. 126–136.
  10. Gronkowski P., Wesołowski M. A model of cometary outbursts: a new simple approach to the classical question // Mon. Notic. Roy. Astron. Soc. 2015. V. 451. P. 3068–3077.
  11. Gronoff G., Maggiolo R., Cessateur G., Moore W.B., Airapetian V., De Keyser J., Dhooghe F., Gibbons A., Gunell H., Mertens C.J., Rubin M., Hosseini S. The effect of cosmic rays on cometary nuclei. I. Dose deposition // Astrophys. J. 2020. V. 890. id. 89 (8 p.).
  12. Heisler J., Tremaine S., Alcock C. The frequency and intensity of comet showers from the Oort cloud // Icarus. 1987. V. 70. P. 269–288.
  13. Hills J.G. Comet showers and the steady-state infall of comets from the Oort cloud // Astrophys. J. 1981. V. 86. P. 1730–1740.
  14. Hudson R.L., Moore M.H. A far-IR study of amorphous ice: an unreported oscillation between amorphous and crystalline phases // J. Phys. Chem. 1992. V. 96. P. 6500–6404.
  15. Huebner W.F., Benkhoff J., Capria M-T., Coradini A., De Sanctis C., Orosei R., Prialnik D. Heat and gas diffusion in comet nuclei // ISSI Sci. Report. 2006. 285 p.
  16. Johnson R.E., Quickenden T.I. Photolysis and radiolysis of water ice on outer Solar system bodies // J. Geophys. Res. 1997. V. 102. Iss. E5. P. 10985–10996.
  17. Marsden B.G., Sekanina Z., Yeomans D.K. Comets and nongravitational forces. V // Astrophys. J. 1973. V. 78. P. 211–225.
  18. Meech K.J., Kleyna J.T., Hainaut O., Micheli M., Bauer J., Denneau L., Keane J.V., Stephens H., Jedicke R., Wainscoat R., Weryk R., Flewelling H., Schunová-Lilly E., Magnier E., Chambers K.C. CO-driven activity in Comet C/2017 K2 (PANSTARRS) // Astrophys. J. 2017. V. 849. id. L8 (7p.).
  19. Moore M.H., Donn B., Khanna R., A’Hearn M.F. Studies of proton-irradiated cometary-type ice mixtures // Icarus. 1983. V. 54. P. 388–405.
  20. Pavlov A.K., Belousov D.V., Tsurkov D.A., Lomasov V.N. Cosmic ray irradiation of comet nuclei: A possible source of cometary outbursts at large heliocentric distances // Mon. Notic. Roy. Astron. Soc. 2022. V. 511. P. 5909–5914.
  21. Prialnik D., Sierks H. A mechanism for comet surface collapse as observed by Rosetta on 67P/Churyumov-Gerasimenko // Mon. Notic. Roy. Astron. Soc. 2017. V. 469. P. S217–S221.
  22. Reach W.T., Vaubaillon J., Lisse C.M., Holloway M., Rho J. Explosion of Comet 17P/Holmes as revealed by the Spitzer Space Telescope // Icarus. 2010. V. 208. P. 276–292.
  23. Shabalin E., Kulagin E., Kulikov S., Melikhov V. Experimental study of spontaneous release of accumulated energy in irradiated ices // J. Radiation Phys. and Chem. 2003. V. 67. P. 315–319.
  24. Siegel S., Flournoy J.M., Baum L.H. Irradiation yields of radicals in gamma-irradiated ice at 4.2° and 77° K // J. Chem. Phys. 1961. V. 34. P. 1782.
  25. Stern S.A., Shull J.M. The influence of supernovae and passing stars on comets in the Oort cloud // Nature. 1988. V. 332. P. 407–411.
  26. Vincent J.B., Bodewits D., Besse S., Sierks H., Barbieri C., Lamy P., Rodrigo R., Koschny D., Rickman H., Keller H.U., Agarwal J., A’Hearn M.F., Auger A.T., Barucci M.A., Bertaux J.L., and 52 co-authors. Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse // Nature. 2015. V. 523. P. 63–66.
  27. Zhu C., Bergantini A., Singh S.K., Abplanalp M.J., Kaiser R.I. Rapid radical–radical induced explosive desorption of ice-coated interstellar nanoparticles // Astrophys. J. 2021. V. 920. id. 73 (15p.).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (105KB)
3.

Жүктеу (86KB)
4.

Жүктеу (652KB)

© Д.В. Белоусов, А.К. Павлов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>