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Метод оценки пространственного периода энерговыделения в солнечных вспышках, основыванный на при-
менении анализа Фурье к разностным изображениям вспышечных аркад в далеком ультрафиолетовом диа-
пазоне, опробован на наблюдениях крупной солнечной вспышки 4 ноября 2003 г. Вспышка произошла на
краю диска Солнца; вспышечная аркада, протянувшаяся вдоль солнечного лимба, была подробно отснята в
ультрафиолетовом канале 195 A спутника TRACE. Фурье-анализ разностных изображений показал наличие
ряда гармоник в пространственном распределении областей энерговыделения вспышки с характерными пе-
риодами, лежащими в диапазоне от 3.3 до 18.6 Мм. Подобная периодизация может быть результатом распада
предвспышечного токового слоя, аккумулирующего энергию солнечной вспышки в корональных магнитных
полях, в связи с некоторой неустойчивостью тепловой, плазменной или иной природы.
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ВВЕДЕНИЕ

В предыдущей статье нами был предложен ме-
тод автоматической оценки пространственного пери-
ода энерговыделения в солнечных вспышках на ос-
нове Фурье-анализа ультрафиолетовых снимков сол-
нечной короны (Леденцов, 2023). Аркады вспышеч-
ных петель магнитного поля содержат в себе ин-
формацию о пространственном распределении обла-
стей первичного энерговыделения. Вмороженность
плазмы в сильное магнитное поле позволяет отсле-
дить причинно-следственные связи между различны-
ми физическими процессами в солнечной атмосфере,
сопровождающими вспышку (Сомов, Сыроватский,
1976; Сомов, 2012). Так, распределение яркости пе-
тель во вспышечной аркаде говорит о том, в каких
областях солнечной хромосферы произошел разогрев
плазмы под действием вспышки. Таким образом, на
основе наблюдений вспышечной аркады представ-
ляется возможным восстановить взаимное располо-
жение областей интенсивного энерговыделения во
вспышке.

Эта задача значительно осложняется тем, что пер-
вичное выделение энергии во вспышке имеет им-
пульсный, скоротечный характер, а наблюдаемое уль-
трафиолетовое свечение вспышечных петель обуслов-
лено медленными тепловыми процессами остывания
плазмы (Бенц, 2017). По этой причине видимое рас-
пределение яркости в аркаде петель формируется на-
ложением нескольких элементарных актов энерговы-
деления, разнесенных не только в пространстве, но
и во времени (Крукер и др., 2003; Рева и др., 2015).

*Электронный адрес: leonid.ledentsov@gmail.com

Для решения данной проблемы мы использовали раз-
ностные изображения последовательных ультрафио-
летовых кадров вспышечной аркады. Медленно меня-
ющиеся особенности на снимках вычитаются, и под-
черкиваются последствия вспышек, произошедших
между двумя кадрами. Далее к разностным изобра-
жениям применяется быстрое дискретное преобразо-
вание Фурье, позволяющее автоматизировать опреде-
ление расположения аркады на кадре и оценку про-
странственного периода энерговыделения.

Как было показано на примере Бастильской
вспышки в предыдущей статье (Леденцов, 2023), наш
метод может применяться не только к отдельному
участку аркады, но и ко всему кадру целиком. Ме-
тод автоматически определяет пространственные
периоды по Фурье-спектру мощности возмущений,
бегущих по вспышечной аркаде. В этой статье мы
обращаем внимание на новую особенность спектра:
возможность формирования в распределении обла-
стей первичного энерговыделения набора стабильных
пространственных гармоник.

В настоящей работе мы не обсуждаем конкретные
пусковые механизмы солнечных вспышек вообще и
эруптивных вспышек в частности. Мы полагаем, что
первичное энерговыделение во вспышке обусловлено
нарушением устойчивости предвспышечного токово-
го слоя, т.е. токового слоя, аккумулирующего свобод-
ную энергию непотенциальных корональных магнит-
ных полей и еще не перешедшего в режим быстрого
пересоединения с интенсивным ускорением заряжен-
ных частиц, который соответствует импульсной фа-
зе солнечной вспышки (Прист, Форбс, 2002; Сомов,
2013; Ториуми, Ванг, 2019).
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В последние десятилетия широко обсуждаются так
называемые квазипериодические пульсации в сол-
нечных вспышках (Зимовец и др., 2021). Пульсации
наблюдаются как периодическое или квазипериоди-
ческое энерговыделение во времени. Мы же заостря-
ем наше внимание на периодичности энерговыделе-
ния в пространстве, хотя эти два явления могут быть
друг с другом тесно связаны (Григис, Бенц, 2005).
К квазипериодическому в пространстве разрушению
токового слоя могут приводить различные неустой-
чивости. Они формируют наблюдаемое распределе-
ние областей быстрого энерговыделения, включая та-
кие возможные особенности, как образование высо-
ких гармоник. Здесь уместно провести аналогию с ко-
лебанием натянутой струны: формирование гармоник
связано с образованием дополнительных узлов коле-
бания на струне, помимо ее краев. Точно так же крат-
ное увеличение узлов периодической неустойчивости
токового слоя может формировать пространственные
гармоники в распределении областей энерговыделе-
ния, наблюдаемые в Фурье-спектре мощности возму-
щений вспышечной аркады.

Наше исследование не касается вопроса природы
неустойчивости, приводящей к солнечной вспыш-
ке. Эту роль могут выполнять тиринг-неустойчивости
(Фюрс и др., 1963; Сомов, Вернета, 1993), взаимодей-

ствие токового слоя с магнитогидродинамическими
волнами (Ворпал, 1976; Накаряков и др., 2006; Ар-
темьев, Зимовец, 2012), плазменные неустойчивости
корональной аркады (Климушкин и др., 2017) или же
тепловые неустойчивости токового слоя (Филд, 1965;
Сыроватский, 1976; Сомов, Сыроватский, 1982). На-
пример, тепловой механизм разрушения предвспы-
шечного токового слоя дает для солнечных вспышек
пространственный период энерговыделения от 1 до
10 Мм и несколько больший с учетом наклонного рас-
пространения возмущения (Леденцов, 2021a, b, c).

НАБЛЮДЕНИЯ И РЕЗУЛЬТАТЫ

Мы рассматриваем большую солнечную вспышку,
произошедшую с 4 на 5 ноября 2003 г. на западном
крае диска Солнца (Кэйн и др., 2005). При фикса-
ции потока ретгеновского излучения произошло на-
сыщение приемников GOES, поэтому точный рент-
геновский класс вспышки многократно пересматри-
вался различными авторами на основе косвенных из-
мерений и оценивался в пределах X28–X48 (Бродрик
и др., 2005). Вспышка произошла на солнечном лим-
бе таким образом, что вспышечная аркада магнитных
петель протянулась вдоль солнечного лимба на де-
сятки градусов и была хорошо отснята космическим

Рис. 1. Пример одного кадра вспышки 4 ноября 2003 г. в канале 195 A, снятой с космического аппарата TRACE. По осям
отложен размер поля зрения телескопа, пунктиром на снимке размечены ячейки 10∘ × 10∘ на поверхности Солнца.
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аппаратом TRACE (Ханди и др., 1998) в ультрафио-
летовом канале 195 A (рис. 1). В процессе вспышки
TRACE отснял четыре серии снимков, содержащих
развитие вспышечной аркады: 21:24:58–22:04:46 UT,
22:31:18–22:44:50 UT, 22:59:31–23:45:01 UT, 00:08:35–
00:20:05 UT – всего 178 кадров, из которых нами бы-
ло составлено 174 разностных изображения размером
512× 512 пикселей (рис. 2). Момент начала вспышки,
около 20:00 UT, нами не рассматривался. В связи с эф-
фектом насыщения пикселей структура вспышечной
аркады в начале вспышки не просматривалась за об-
щим ярким ультрафиолетовым свечением.

Основной причиной выбора для исследования
вспышки 4 ноября 2003 г. было удачное расположе-
ние аркады магнитных петель в картинной плоскости
с видом “в профиль”. По аналогичным причинам для
предыдущего исследования была выбрана Бастиль-
ская вспышка (Леденцов, 2023). Однако вспышечная
аркада Бастильской вспышки располагалась в кар-
тинной плоскости анфас, и излучение вершин петель
равномерно распределялось вдоль ширины аркады
(Оланье и др., 2000; Сомов и др., 2002). На вспышке
4 ноября, напротив, вблизи вершины большая часть
петли располагалась вдоль луча зрения и по этой
причине имела очень высокую яркость. Эта яркая
область помешала автоматическому определению
расположения аркады по двумерному Фурье-спектру

мощности возмущений, в соответствии с методом,
описанным ранее (Леденцов, 2023).

Двумерный спектр мощности оказался вытянутым
вдоль направления, перпендикулярного к вспышеч-
ной аркаде (рис. 3), в то время как двумерные спек-
тры мощности возмущений в Бастильской вспышке
были вытянуты вдоль аркады. Спектр вытягивается
вдоль доминирующего волнового вектора возмуще-
ний, присутствующих на разностном изображении,
и во вспышке 4 ноября таким возмущением оказа-
лось изменение яркости вершины вспышечной арка-
ды, а не отдельных вспышечных петель. Однако на
спектрах вспышки 4 ноября обнаружилась интерес-
ная особенность: спектры разбиваются на волокна,
расположенные уже вдоль изменяющих яркость пе-
тель. Эта особенность позволяет дополнить автомати-
зацию обработки Фурье-спектра мощности возмуще-
ний вспышки 4 ноября. Достаточно повторить про-
цедуру построения двумерного спектра мощности, но
не для разностных изображений вспышки, а для их
Фурье-спектров (рис. 4). Назовем спектры, изобра-
женные на рис. 3 и 4, первичным и вторичным соот-
ветственно. Далее, по аналогии с процедурами, опи-
санными в предыдущей статье, можно произвести по-
иск направления доминирующего волнового векто-
ра возмущений вспышечной аркады по вторичному
Фурье-спектру. Затем, зная это направление, повер-

Рис. 2. Пример разностного изображения двух последовательных снимков вспышечной аркады.
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Рис. 3. Пример двумерного Фурье-спектра мощности возмущений разностного изображения, показанного на рис. 2. Пред-
ставлена увеличенная центральная часть. Цветом показана мощность возмущения, вдоль горизонтали и вертикали откла-
дываются компоненты волновых чисел возмущений. Более подробное описание спектра мощности см. в Леденцов (2023).

нуть первичный спектр на угол наклона волнового
вектора к горизонтали и просуммировать его по всем
столбцам, чтобы получить одномерный спектр возму-
щений, распространяющихся вдоль вспышечной ар-
кады (рис. 5).

Пики на одномерном спектре показывают волно-
вые числа доминирующих возмущений вспышечной
аркады. На рис. 5 пики расположены вблизи крат-
ных волновых чисел. Похожая картина наблюдает-
ся также на некоторых других одномерных спек-
трах. Кратность волновых чисел может говорить о
формировании ряда гармоник распространяющими-
ся возмущениями. Отделим возмущения от фоново-
го тренда. В предыдущей работе мы искали тренд ме-
тодом апроксимации экспоненциальной функцией.
В этом исследовании, задавшись целью поиска гар-
моник распространяющегося возмущения, опреде-
лим тренд при помощи медианного фильтра с окном
∆k = 13. Это значение немного превышает предпола-
гаемое расстояние между гармониками в простран-
стве волновых чисел. После применения фильтра ис-
комые гармоники и более высокочастотные измене-
ния устраняются из спектра, и остается только мед-
ленный тренд. Кроме того, тренд, выделенный меди-
анным фильтром, по сравнению с экспоненциальной

аппроксимацией лежит ближе к исходному Фурье-
спектру в области больших волновых чисел k. Это поз-
волит проверить наличие высоких гармоник у распро-
страняющегося возмущения. После нормировки на
медленный тренд значимые возмущения можно вы-
делить в соответствии с некоторым количественным
критерием относительно среднеквадратичного откло-
нения σ значений в полученном ряду (рис. 6).

Три первых пика на рис. 6 превышают порог 3σ и
находятся на равном расстоянии друг от друга. Прове-
рим стабильность образования подобной структуры.
Если просуммировать нормированные спектры всех
174 разностных изображений, стационарные структу-
ры усилятся, а случайные события ослабнут. Вспышка
4 ноября демонстрирует стабильную картину рас-
пределения возмущений по спектру (рис. 7). Первые
9 пиков на рис. 7 надежно превышают критерий
1σ и показывают явную периодическую структуру.
Вторичный Фурье-спектр мощности суммарного
ряда имеет два явных пика, соответствующих пери-
одизации k1 = 256/36 ≈ 7 и k2 = 256/30 ≈ 9 единиц
волнового числа (рис. 8). Периодизация k1 = 7
хорошо прослеживается по положениям главных
пиков вплоть до волнового числа k = 105, и боль-
шинство из этих пиков достигают отклонения в 1σ.
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Рис. 4. Пример вторичного двумерного Фурье-спектра мощности, построенного на основе рис. 3. Представлена увеличен-
ная центральная часть.
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Рис. 5. Пример одномерного спектра мощности возмущений полного кадра, представленного на рис. 2. S – мощность воз-
мущения, k – волновое число.
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Рис. 6. Пример одномерного спектра мощности (рис. 5), нормированного на медленный тренд. Тонкой сплошной линией
нанесено среднее значение мощности, пунктирной – уровень 1σ над средним.
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Рис. 7. Сумма всех нормированных одномерных спектров мощности для вспышки 4 ноября 2003 г. Тонкой сплошной линией
нанесено среднее значение мощности, пунктирной – уровень 1σ над средним.

Если рассматривать только первые девять высоких
пиков на рис. 7, то диапазон пространственных
периодов энерговыделения, соответствующих
их волновым числам, простирается от λ1 =

= 0.4× 512/11 ≈ 3.3 Мм до λ2 = 0.4× 512/62 ≈ 18.6 Мм,
где коэффициент 0.4 Мм/пиксель соответствует
приблизительной разрешающей способности уль-
трафиолетового телескопа на космическом аппарате
TRACE. Если принять во внимание менее явные
пики, то нижняя граница пространственных пе-
риодов расширится до λ1 = 0.4 × 512/105 ≈ 2 Мм.
Мы интерпретируем эти результаты как быстрое
энерговыделение в результате разрушения пред-

вспышечного токового слоя с пространственной
периодизацией, содержащей множество высоких
гармоник. Найденные гармоники аналогичным
образом выделяются на каждой из четырех отдель-
но взятых серий изображений, хоть и с меньшей
достоверностью по причине меньшей выборки.

Применение описанной процедуры к модельному
ряду сгенерированных разностных изображений поз-
воляет надежно установить наличие высоких гармо-
ник в данных. На рис. 9 и 10 представлены приме-
ры одного из 174 сгенерированных изображений и его
двумерного Фурье-спектра. Каждое разностное изоб-
ражение сформировано суммой 32 плоских волн с
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Рис. 8. Вторичный Фурье-спектр мощности суммы, изображенной на рис. 7.

Рис. 9. Пример модельно сгенерированного разностного изображения.

волновым числом основной гармоники k = 8. Ам-
плитуды волн ограничены в пространстве гауссовыми
кривыми по двум координатам. Всем гармоникам до-
бавлены случайные отклонения в амплитуде, волно-
вом числе, фазе, а также направлении распростра-

нения. Кроме того, на каждое изображение наложен
случайный гауссовский шум. Характерный двумер-
ный спектр мощности сгенерированных изображе-
ний (рис. 10) отличается от наблюдаемого (рис. 3) от-
сутствием сильного медленного тренда, наиболее за-
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Рис. 10. Пример двумерного Фурье-спектра мощности возмущений разностного изображения, показанного на рис. 9. Пред-
ставлена увеличенная центральная часть.
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Рис. 11. Сумма всех нормированных одномерных спектров мощности для модельного ряда разностных изображений. Тон-
кой сплошной линией нанесено среднее значение мощности, пунктирной – уровень 1σ над средним.

метного, как яркая область в центре рис. 3. Непрерыв-
ный тренд в основном обусловлен яркими узколока-
лизованными областями на разностных изображени-

ях, связанных с вершинами петель для вспышки 4 но-
ября 2003 г. Подобные узколокализованные структу-
ры в модельные разностные изображения не вноси-

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 51 № 1 2025



50 ЛЕДЕНЦОВ

лись. Суммарный одномерный Фурье-спектр мощ-
ности 174 сгенерированных изображений (рис. 11)
показывает похожую на реальный спектр (рис. 7)
структуру. Первые 7 пиков на рис. 11 имеют квазипе-
риодическое распределение вдоль оси волновых чи-
сел и надежно превышают отклонение в 1σ. Вторич-
ный Фурье-спектр мощности суммарного ряда име-
ет один главный пик, соответствующий заданной пе-
риодизации k = 256/32 ≈ 8 единиц волнового числа
(рис. 12).

Для сравнения также применим всю последова-
тельность описанных процедур к ранее рассматривав-
шейся Бастильской вспышке. Рисунки 13 и 14 де-

монстрируют суммарный нормированный одномер-
ный Фурье-спектр мощности, построенный на основе
данных предыдущей работы, и его вторичный Фурье-
спектр мощности соответственно. Спектры не пока-
зывают ни формирования множества гармоник воз-
мущения, ни наличия какого-либо выделенного про-
странственного периода энерговыделения. Высокий
пик вблизи начала координат на рис. 14 и подоб-
ный пик на рис. 8 описывают постепенное изменение
среднего значения мощности на рис. 7 и рис. 13 при
увеличении волнового числа и соответствуют медлен-
ному тренду, оставшемуся после медианной фильтра-
ции и нормировки спектров.
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Рис. 12. Вторичный Фурье-спектр мощности суммы, изображенной на рис. 11.
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Рис. 13. Сумма всех нормированных одномерных спектров мощности для Бастильской вспышки. Тонкой сплошной линией
нанесено среднее значение мощности, пунктирной – уровень 1σ над средним.
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Рис. 14. Вторичный Фурье-спектр мощности суммы, изображенной на рис. 13.

По наблюдениям пары вспышек невозможно уста-
новить, насколько распространено найденное фор-
мирование гармоник в Фурье-спектре мощности воз-
мущений вспышки 4 ноября, почему оно отсутству-
ет в Бастильской вспышке и, более того, является ли
достоверным физическим эффектом, а не проявлени-
ем начальной неоднородности параметров магнитно-
го поля и плазмы вдоль нейтральной линии или ре-
зультатом неучтенных особенностей математической
обработки. Ответ на этот вопрос требует дальнейших
исследований большого числа вспышек.

ЗАКЛЮЧЕНИЕ

Нами изучено пространственное распределение об-
ластей первичного энерговыделения в большой сол-
нечной вспышке, произошедшей 4 ноября 2003 г. Ис-
следование произведено на основе данных ультра-
фиолетовых наблюдений развития вспышечной арка-
ды и метода, предложенного автором ранее (Леден-
цов, 2023). Метод заключается в применении быст-
рого дискретного преобразования Фурье к разност-
ным изображениям вспышечной аркады. Для данно-
го исследования метод был модернизирован на ша-
ге автоматизации поиска направления распростране-
ния возмущений в аркаде в связи с особенностями
расположения вспышки вблизи лимба Солнца, а так-
же на шаге выделения медленного тренда в одно-
мерном Фурье-спектре мощности бегущих по арка-
де возмущений для обнаружения новой особенности
в периодизации областей энерговыделения – форми-
ровании множественных стабильных пространствен-
ных гармоник. Область пространственных периодов,
соответствующих найденным гармоникам, занимает
диапазон от 3.3 до 18.6 Мм.

Мы полагаем, что пространственные гармоники
могут формироваться в процессе распада токового
слоя, аккумулирующего энергию коронального маг-
нитного поля перед вспышкой. Для этого токовый
слой конечной длины в процессе роста малого возму-
щения под действием одной из возможных неустой-
чивостей плазменной, тепловой или иной природы
должен испытывать колебания не только на неко-
торой “собственной” частоте, характерной частоте
неустойчивости, но и ее гармониках. Так, например,
тепловая неустойчивость может привести предвспы-
шечный токовый слой к распаду с пространственным
периодом 1–10 Мм в широком диапазоне корональ-
ных параметров плазмы (Леденцов, 2021a, b). Увели-
чение масштаба неустойчивости до 20 Мм также воз-
можно в случае наклонного распространения возму-
щения вдоль токового слоя (Леденцов, 2021c). Одна-
ко тепловая неустойчивость в линейном приближе-
нии не формирует дополнительных пространствен-
ных гармоник возмущения. Найденный в нашем ис-
следовании эффект образования пространственных
гармоник требует дальнейшего исследования – как
количественного, с привлечением новых наблюда-
тельных данных, так и качественного, с позиций тео-
ретической интерпретации результатов.

Работа основана на наблюдательных данных, по-
лученных на космическом аппарате TRACE. Ис-
следование выполнено при финансовой поддержке
Российского научного фонда (грант № 23-72-30002,
https://rscf.ru/project/23-72-30002/).
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