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Впервые показано, что гелиевые звезды с массой (2–7) M⊙, сформировавшиеся в тесных двойных системах
в так называемом случае В обмена веществом и сохранившие маломассивные водородно-гелиевые оболоч-
ки, претерпевают нелинейные радиальные пульсации. Пульсации возбуждаются κ-механизмом, обусловлен-
ным ионизацией гелия. Область пульсационной неустойчивости охватывает часть диаграммы Герцшпрунга–
Рассела от ветви красных гигантов до эффективных температур 4.5 ≲ lg Teff ≲ 4.7. Переменность блеска долж-
на, как правило, наблюдаться в ультрафиолетовой области спектра. Амплитуды пульсаций исследованных
моделей достигают ∆Mbol = 0.8 и возрастают с уменьшением радиуса звезды R. Периоды пульсаций состав-
ляют от 0.17 до 3.9 сут и сокращаются с уменьшением R. Звезды имеют существенно большие Teff, чем их
спутники, которые могут быть звездами типа Be. Пульсирующие гелиевые звезды являются компонентами
относительно широких звездных систем с периодами, достигающими нескольких лет. Численность пульси-
рующих гелиевых звезд в Галактике составляет ≃103.
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1. ВВЕДЕНИЕ

В пионерских работах по эволюции тесных двой-
ных звездных систем (ТДС) Киппенхан с соавтора-
ми (1967а, б), Пачинский (1967), Зюлковский (1970),
Джианноне и Джианнуци (1972) нашли, что компо-
ненты ТДС солнечного химического состава с мас-
сами >

∼ 3M⊙, заполняющие полость Роша на ста-
дии горения водорода в слоевом источнике (звезды-
доноры), после прекращения потери вещества сжима-
ются и трансформируются в горячие гелиевые звез-
ды с тонкими водородными оболочками (∆(MH) ⪅
1M⊙). Дальнейшие исследования показали, что гелие-
вые звезды умеренных масс (2–7)M⊙ занимают на диа-
грамме Герцшпрунга–Рассела (ГР) область lg(Teff) ≈
4.5–5.0, lg(L/L⊙) ≈ 2.5–5.0. На стадии горения ге-
лия в ядре звезды проводят ∼10% времени жизни их
предшественников на стадии главной последователь-
ности tMS. Стадии горения гелия в ядре предшеству-
ет гораздо более короткая (∼0.01tMS) стадия выгора-
ния водорода в слоевом источнике, в ходе которой
радиусы звезд уменьшаются от десятков и сотен R⊙
до (0.1–1)R⊙, а светимость падает в несколько раз.
Дутта и Кленцкий (2024) предложили для гелиевых
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звезд с радиусами большими (10–15)R⊙ на стадии сжа-
тия непосредственно после завершения обмена ве-
ществом термин “puffed–up stripped stars”. В настоя-
щей статье они именуются “раздутыми обнаженными
звездами” или “ободранными звездами”1.

Ибен и Тутуков (1985, 1987) отождествили гелиевые
звезды с массами ⪅2M⊙ с гелиевыми cубкарликами
(sdB, sdO), а объекты более массивные, чем≈7M⊙, Па-
чинский (1967) сопоставил с звездами Вольфа–Райе.
Отметим, что к моменту написания статьи были из-
вестны всего около двадцати двойных субкарликов
(или кандидатов) с подтвержденными массами от 1
до 2M⊙ и известными орбитальными периодами (Ван
и др., 2023; Клемент и др., 2024). Остальные гелие-
вые субкарлики обычно имеют массы ≲0.6M⊙ (Хебер,
2024). Спутниками массивных субкарликов в ТДС,
как правило, являются звезды типа Be (см., например,
Ван и др., 2023, табл. 9), что указывает на предшеству-
ющий обмен веществом, так как аккреция вещества,
обладающего моментом импульса, приводит к суще-
ственному ускорению вращения спутников будущих
гелиевых звезд.

1Термин не вполне корректен, так как звезды сохраняют часть
водородной оболочки, т.е. они “полуобнаженные”.
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В то время как многочисленные двойные субкар-
лики с массами ≲2M⊙ и звезды Вольфа–Райе в Га-
лактике наблюдаются, гелиевые звезды с массами от
2 до 7M⊙, хотя бы и очень редкие, до самого послед-
него времени не были известны. При этом разделен-
ные гелиевые звезды в ТДС найдены в Больших и Ма-
лых Магеллановых Облаках (Вилласеньор и др., 2023;
Дроут и др., 2023; Гётберг и др., 2023; Рамачандран и
др., 2023, 2024), что, несмотря на отличие металлич-
ности БМО и ММО от металличности диска Галакти-
ки, позволяет утверждать, что теория звездной эволю-
ции корректна и горячие гелиевые звезды должны су-
ществовать и в Млечном Пути. Обнаружению гелие-
вых звезд препятствует существенное различие спек-
тральных характеристик компонентов ТДС (детально
вопрос о возможности детектирования гелиевых звезд
рассмотрели Гётберг и др., 2018).

Единственным кандидатом в Галактике пока явля-
ется HD 96670, которую ранее рассматривали как воз-
можную O/B-звезду в паре с черной дырой. Одна-
ко Назе и Рау (2025) показали, что наблюдаемые в
системе затмения исключают черную дыру. На осно-
ве спектроскопических и ультрафиолетовых наблюде-
ний они предположили, что система состоит из ги-
ганта спектрального класса O8.5 и спутника с мас-
сой ∼4.5M⊙, радиусом ∼1R⊙ и эффективной темпера-
турой lg(Teff) ∼ 4.7. Подобная звезда может быть остат-
ком первичного компонента ТДС с исходной массой,
близкой к (15–16)M⊙ (Юнгельсон и др., 2024). Ирр-
ганг и др. (2022) предполагают, что в системе γCol
яркий компонент спектрального класса B с массой
≃4M⊙, Teff = 15 570 ± 320 K и lg(g) = 3.3 ± 0.1 являет-
ся обнаженной звездой на стадии перемещения в го-
рячую область диаграммы ГР. На возможную потерю
звездой вещества в ТДС и ее большой радиус, кроме
низких Teff и lg(g), указывает и аномально высокое со-
держание азота на поверхности.

Кроме того, в Галактике обнаружены несколько
разделенных ТДС с компонентами – субкарликами с
большими радиусами и звездами Be – LB-1 (Шенар
и др., 2020; Леннон и др., 2021; Эль-Бадри, Куатаэрт,
2021), HR 6819 (Боденштайнер и др., 2020), а также
маломассивная полуразделенная система HD 15125
с донорами и аккретором, близкими по параметрам
к LB-1 и HR 6819 (Эль-Бадри и др., 2022). Сходная
с ними разделенная система NGC 1850 BH1 найде-
на в БМО (Эль-Бадри, Бэрдж, 2022). Относительно
низкие Teff маломассивных компонентов этих двой-
ных звезд и их положение на диаграмме ГР позволяют
предполагать, что это или раздутые обнаженные звез-
ды, или звезды, в ядрах которых выгорел гелий и они
“раздулись” на стадии горения гелия в слоевом ис-
точнике. Звезда типа HD 15125 может быть непосред-
ственным их предшественником (Эль-Бадри и др.,
2022). Ривиниус с соавторами (Ривиниус и др., 2025)
подтвердили, что компонентами LB-1 и HR 6819 яв-
ляются Be-звезды со спутниками-субкарликами. Они

также предположили, что в четырех наблюдавших-
ся ими системах с компонентами – Be-звездами и
субкарликами лишь недавно закончился обмен веще-
ством и субкарлики еще имеют протяженные радиу-
сы.

Обнаружение обнаженных гелиевых звезд проме-
жуточных масс и/или их предшественников, отсут-
ствие которых среди наблюдаемых звезд являлось “за-
гадкой” на протяжении пятидесяти лет, предоставля-
ет существенную возможность проверки теории эво-
люции звезд и исследования звездных пульсаций. По-
вышенный интерес к этим звездам обусловлен и тем,
что если их масса превышает ≃2.2M⊙, они могут быть
предшественниками Сверхновых звезд типов Ib и Ic
(Хабетс, 1986; Вусли и др., 1995).

Систематическое исследование гипотетической
популяции гелиевых звезд в Галактике (Z = 0.02)
было проведено Юнгельсоном с соавторами (2024).
Рассматривались ТДС с массами первичных компо-
нентов на начальной главной последовательности
от 4 до 25 M⊙, отношениями масс компонентов
q = M2/M1 = 0.6, 0.8, 0.9 и интервалом исходных
орбитальных периодов Porb = (2–103) сут.

Ховис-Афлербах с соавторами (2024) провели ана-
логичное исследование для звезд с исходными масса-
ми от 2 до 18.7M⊙, q = 0.8 и 3 сут ⩽ Porb ⩽ 31.5 сут
при Z = 0.014, 0.006, 0.002 и 0.0002. В обеих рабо-
тах осуществлен гибридный популяционный синтез с
учетом результатов детальных расчетов эволюции по
программе MESA (см. Джермин и др. (2023) и приве-
денные в этой работе ссылки). Для Z = 0.02 и Z = 0.014
численность объектов с массами (2–7) M⊙ оценива-
ется, соответственно, как ≃3000 в работе Юнгельсо-
на и др. (2024) и ≃ 4000 в работе Ховис-Афлербах и
др. (2024), что следует признать разумным согласием
с учетом допустимых различий в параметрах звездных
моделей и популяционного синтеза. Ранее, Шао и Ли
(2021), использовав программу популяционного син-
теза BSE (Харли и др., 2002), оценили численность об-
наженных гелиевых звезд в Галактике как ∼103.

Настоящая статья является продолжением рабо-
ты Юнгельсона и др. (2024) по моделированию об-
наженных гелиевых звезд. Нами предпринята по-
пытка исследовать нелинейные пульсации гелиевых
звезд с массой ≈(2–7) M⊙ (масса предшественников
(9–16) M⊙, начиная с момента завершения обмена
веществом в ТДС и до выгорания гелия в ядре и
оценить возможную численность подобных объек-
тов. С этой целью рассмотрены гидродинамические
модели звездных пульсаций остатков компонентов-
доноров в ТДС с различными орбитальными периода-
ми на начальной главной последовательности (НГП).
В разделе 2 описаны рассчитанные эволюционные
модели и их строение. В разделе 3 изложена мето-
дика расчетов пульсаций и приведены их результаты.
Оценка численности нелинейно пульсирующих звезд
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методом популяционного синтеза приведена в разде-
ле 4. Результаты работы обсуждаются в разделе 5.

2. ЭВОЛЮЦИОННЫЕ МОДЕЛИ ОБНАЖЕННЫХ
ГЕЛИЕВЫХ ЗВЕЗД

Нами исследованы нелинейные пульсации звезд,
предшественники которых имели массу на главной
последовательности 9, 12 и 16M⊙. Согласно Юнгель-
сону и др. (2024), интервалу масс гелиевых звезд
(2–7)M⊙ соответствуют звезды с исходными массами
до ≈20M⊙ (в зависимости от Porb в момент заполнения
донором полости Роша), но очевидно, что числен-
ность звезд с массами большими 16M⊙ незначитель-
на по сравнению с менее массивными звездами. При-
нятые в расчетах предположения относительно та-
ких параметров, как условия перемешивания на гра-
нице конвективных ядер звезд, звездный ветер, па-
раметры популяционного синтеза, описаны в рабо-
те Юнгельсона и др. (2024). Единственное существен-
ное отличие состоит в том, что для системы с массой
первичного компонента M1,0 = 16M⊙ эффективность
конвективного проникновения на границе водород-
ных ядер звезд не ограничивалась, а принимался фик-
сированный параметр экспоненциального проникно-
вения fov = 0.004, что приводит к несколько большим
значениям масс гелиевых звезд. Для ТДС с исходными
массами первичных компонентов 9 и 12 M⊙ начальное
значение отношения масс компонентов q принима-
лось равным 0.8, а для систем c M1,0 = 16M⊙ оно рав-
нялось 0.9.

Следуя Пакету (1981), мы предполагали, что обмен
веществом происходит консервативно до того, как эк-
ваториальная угловая скорость вращения аккретора
достигает 95% критической (ωcr), после чего аккре-
ция может продолжаться лишь в пределах, ограничен-
ных поддержанием ωcr, а избыток вещества, ускорен-
ный вращением, уходит из системы, унося удельный
момент импульса аккретора. Скорость вращения до-
стигает предельного значения после переноса всего
5–10% массы донора, так что масса аккретора прак-
тически не изменяется. Но важно, что его экватори-
альная скорость вращения достигает сотен км/с и он
должен представлять собой Оe/Вe-звезду.

Эволюционные и пульсационные характеристики
моделей приведены в табл. 1. Ввиду значительных за-
трат машинного времени, необходимых для расчета
моделей, мы ограничились подробным рассмотрени-
ем последних для массы первичного компонента на
НГП M0 = 12M⊙ и периодами на НГП P0 = 100,
300, 400 сут, а для моделей с M0 = 9 и 16 M⊙ рас-
смотрели модели с P0 = 100 и 200 сут соответственно.
В таблице также указаны массы, светимости и эффек-
тивные температуры спутников промоделированных
звезд. Отметим, что эти характеристики практически
не изменяются за время стадии, на которой гелиевые
звезды испытывают пульсации. На рис. 1 приведены

треки звезд с M0 = 12M⊙ и отмечены гидродинамиче-
ские модели звездных пульсаций.

3. РАДИАЛЬНЫЕ ПУЛЬСАЦИИ РАЗДУТЫХ
ОБНАЖЕННЫХ ГЕЛИЕВЫХ ЗВЕЗД

К моменту завершения потери вещества в ядрах
предшественников обнаженных гелиевых звезд начи-
нает гореть гелий. На стадии, когда звезды пульсиру-
ют, центральное содержание гелия Yc понижается до-
полнительно на ≃0.1, но на протяжении всего этого
времени доминирующим источником энергии оста-
ется слоевой источник горения водорода.

Вследствие потери массы во внешних слоях обо-
лочки первичного компонента появляется вещество,
затронутое ранее нуклеосинтезом и поэтому характе-
ризующееся дефицитом водорода и избытком гелия.
В качестве иллюстрации на рис. 2 показаны профили
распределения водорода и гелия в двух моделях раз-
дутой обнаженной гелиевой звезды – остатка звезды с
исходной массой 12M⊙ в ТДС с начальным орбиталь-
ным периодом 300 cут. Первая из этих моделей, про-
фили водорода и гелия для которой показаны на рис. 2
штриховыми линиями, находится на начальной ста-
дии горения гелия. Эффективная температура звезды
составляет Teff = 3.6 × 103 K, и на диаграмме ГР она
расположена около максимума светимости. На рис. 1
эта модель отмечена звездочкой. Эффективная тем-
пература второй модели, профили водорода и гелия
которой показаны сплошными линиями, составляет
Teff = 2.5 × 104 K. В табл. 1 эта эволюционная модель
отмечена значком “•”. Среди гидродинамических мо-
делей данной эволюционной последовательности эта
модель последняя, которая неустойчива относитель-
но радиальных колебаний.

Известно, что с увеличением содержания гелия гра-
ница существования радиально пульсирующих звезд
смещается на диаграмме ГР в сторону высоких эф-
фективных температур, которые значительно превос-
ходят Teff ≈ 104 K (Фадеев, Новикова, 2003). Продол-
жительность этой стадии эволюции исчисляется сот-
нями тысяч лет (приблизительные оценки t⋆ см. на
рис. 1), поэтому большой интерес представляет рас-
смотрение возникновения пульсаций и определение
периодов и амплитуд изменения блеска.

Для моделей, параметры которых приведены в
табл. 1, были проведены гидродинамические расче-
ты нелинейных звездных пульсаций. Система уравне-
ний радиационной гидродинамики и нестационарной
конвекции, а также используемые значения парамет-
ров теории конвекции (Куфюс, 1986), обсуждаются в
работе Фадеева (2013). В отличие от расчетов звездной
эволюции, основанных на использовании адаптив-
ной разностной сетки, решение уравнений гидроди-
намики проводилось на фиксированной лагранжевой
сетке. Начальные значения сеточных функций гидро-
динамической модели рассчитывались на основании
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Рис. 1. Эволюционные треки первичных компонентов ТДС с исходной массой 12M⊙ в системах с начальным орбитальным
периодом 100 сут (сплошная линия), 300 сут (штриховая линия), 400 сут (штрихпунктирная линия). Звездочками на треках
отмечены начало горения He в ядре (в холодной области диаграммы) и завершение стадии пульсаций (в горячей области).
Заполненными и незаполненными кружками отмечены, соответственно, пульсирующие и устойчивые модели; t⋆ – про-
должительность стадии пульсаций.

данных эволюционной модели посредством нелиней-
ного интерполирования кубическими сплайнами. Та-
ким образом, гидродинамическая модель звездных
пульсаций оказывается полностью согласованной с
моделью эволюционной последовательности как по
значениям физических переменных, так и по рас-
пределению содержания химических элементов вдоль
пространственной координаты. Внутренняя граница
гидродинамической модели в зависимости от стро-
ения звезды фиксировалась в слоях с температурой
107 K ≲ T ≲ 2.5 × 107 K2. Таким образом, при реше-
нии уравнений гидродинамики генерация энергии в
реакциях термоядерного синтеза не рассматривалась,
а в качестве одного из внутренних граничных условий
использовалось условие L0 = L, где L0 – светимость на
внутренней границе гидродинамической модели, L –
светимость модели эволюционной последовательно-
сти.

Решение задачи Коши для уравнений гидроди-
намики описывает самовозбуждающиеся звездные

2Предшественниками рассматриваемых звезд являются звезды с
массами >

∼12M⊙, и горение водорода у них происходит в реакциях
горячего CNO-цикла при температуре T ∼ 4 × 107 K.

пульсации, которые возникают вследствие малых гид-
родинамических возмущений, и где роль начальных
возмущений играют ошибки интерполирования. При
таком подходе интегрирование уравнений гидродина-
мики приводит к решениям двух видов. В одном слу-
чае, если звезда устойчива относительно радиальных
пульсаций, решение описывает затухающие колеба-
ния. В другом случае решением являются колебания с
экспоненциально возрастающей амплитудой. Каппа-
механизм пульсационной неустойчивости связан с
зонами частичной ионизации, где непрозрачность
звездного вещества увеличивается пропорционально
температуре газа. Прекращение роста амплитуды ко-
лебаний с последующим переходом к колебаниям
предельного цикла (насыщение κ-механизма) проис-
ходит вследствие приближения газа к состоянию пол-
ной ионизации, когда дальнейшее сжатие газа сопро-
вождается уменьшением коэффициента поглощения
(Кристи, 1966; Кокс и др., 1966). При нелинейных ко-
лебаниях большой амплитуды условие повторяемости
колебаний предельного цикла выполняется с ограни-
ченной точностью, однако оценка амплитуды, полу-
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Рис. 2. Профили распределения массовых долей гелия и водорода в раздутой звезде в начале горения гелия в ядре (штрихо-
вые линии) и на границе пульсационной неустойчивости.

ченная осреднением по большому числу циклов коле-
баний, остается неизменной.

Определение периода колебаний гидродинамиче-
ской модели Π проводилось с помощью дискретного
преобразования Фурье кинетической энергии пульса-
ционных движений:

EK(t) =
1
2

N∑︁
j=1

U j(t)∆M j,

где U j(t) и ∆M j – скорость течения газа и масса
лагранжева интервала в j-м слое, N = 400 – число
лагранжевых интервалов. Интервал времени, в преде-
лах которого рассчитывалась величина EK(t), охваты-
вал несколько сотен циклов пульсаций, поэтому по-
грешность определения периода Π составляла менее
одного процента.

Основные характеристики гидродинамических мо-
делей приведены в табл. 1: Π – период колебаний,
η = Πd ln EK/dt – темп роста (η > 0) или затухания
(η < 0) кинетической энергии пульсаций EK, ампли-
туда изменения скорости течения газа ∆Us и боломет-
рического блеска ∆Mbol на внешней границе модели.

Для иллюстрации результатов расчетов нелиней-
ных звездных пульсаций на рис. 3 приведены графики
изменения болометрического блеска и скорости тече-
ния газа на внешней границе трех гидродинамических

моделей эволюционной последовательности MZAMS =

= 12M⊙, Porb = 400 сут. Для удобства графического
представления величина δMbol отсчитывается от сред-
него (равновесного) болометрического блеска эволю-
ционной модели звезды.

Как показывает рис. 3, несмотря на значительную
амплитуду радиальной скорости газа на поверхности
(∆Us ∼ 200 км/с), амплитуда изменения блеска не
превосходит половины звездной величины, что суще-
ственно отличает пульсирующие гелиевые звезды, на-
пример, от классических цефеид. Основная причина
такого различия связана с отсутствием зоны иониза-
ции водорода вследствие высокой эффективной тем-
пературы пульсирующих гелиевых звезд. Возраста-
ние амплитуды изменения блеска ∆Mbol с увеличени-
ем эффективной температуры обусловлено смещени-
ем зон ионизации гелия к поверхности, где амплиту-
да радиального смещения наиболее велика. Следует
заметить, что с увеличением эффективной темпера-
туры гелиевой звезды уменьшается масса зон иони-
зации гелия. В конечном счете, с увеличением Teff
происходит внезапное прекращение пульсаций, когда
суммарная механическая работа

∮︀
PdV совершаемая

за цикл колебаний в слоях частично ионизованного
гелия, оказывается меньше суммарной механической
работы, производимой за цикл в более глубоких слоях
полностью ионизованного газа, в которых происхо-
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Рис. 3. Изменения болометрического блеска (а) и скорости течения газа на внешней границе (б) для трех гидродинамиче-
ских моделей эволюционной последовательности MZAMS = 12M⊙, Porb = 400 сут. Справа около кривых приведены значения
равновесной эффективной температуры (а) и периода радиальных пульсаций (б).

дит подавление пульсаций. Для моделей эволюцион-
ной последовательности MZAMS = 12M⊙, Porb = 400 сут,
представленных на рис. 3, высокотемпературная гра-
ница области пульсационной неустойчивости соот-
ветствует эффективной температуре Teff ≈ 3 × 104 K.
К этому моменту температура в центре гелиевого яд-
ра достигает 1.6 × 108 К, энерговыделение на единицу
массы гелия в центре звезды составляет ∼40% макси-
мума энерговыделения в центре слоевого источника
горения водорода. Горение He начинает заменять го-
рение H как основной источник светимости звезды.

4. ЧИСЛЕННОСТЬ ПУЛЬСИРУЮЩИХ ЗВЕЗД

На рис. 4 показано распределение численности ге-
лиевых звезд с массами (1–7) M⊙ на диаграмме ГР
(Юнгельсон и др., 2024). Область, занимаемую пуль-

сирующими звездами, можно приблизительно огра-
ничить линией равных радиусов R ≈ 4 R⊙, т.е. она за-
хватывает не только “раздутые обнаженные звезды”
по определению Дутты и Кленцкого (2024), но и звез-
ды, у которых существенную роль начинает играть го-
рение He в ядре. Cовременная численность пульси-
рующих звезд при скорости звездообразования в Га-
лактике 2 M⊙/год (Чомюк и Пович, 2011) составляет
≈1000, т.е. около (25–30)% всех гелиевых звезд с мас-
сами от 2 до 7 M⊙.

Отметим, что галактические обнаженные гелиевые
звезды с lg(Teff) >∼ 4.4 и lg(L/L⊙) >∼ 4.9 отождествляются
с звездами Вольфа–Райе азотной последовательности
(см., например, Шенар и др., 2020б).

В нашей работе учитывались только звезды, сфор-
мировавшиеся в результате устойчивого обмена ве-
ществом. Возможность образования He-звезд в ре-
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Рис. 4. Гелиевые звезды на диаграмме ГР (Юнгельсон и др., 2024). В тоновой шкале показана численность звезд в ячейках
∆(lg(Teff)) × ∆(lg(L/L⊙)) = 0.05 × 0.1. Сплошными линиями показаны примеры эволюционных треков звезд, для которых
проведены расчеты пульсаций (см. табл. 1). Для них указаны исходные массы компонентов и орбитальные периоды. Синим
цветом выделены участки треков, на которых возможны пульсации.

зультате эволюции в общих оболочках не рассмат-
ривалась ввиду отсутствия теоретических представле-
ний относительно строения звезд, “выживших” в об-
щих оболочках. Это обстоятельство ограничивает ис-
ходные периоды предшественников гелиевых звезд в
ТДС (200–500) сут в зависимости от исходной массы
и q и, возможно, занижает их численность. Используя
“стандартные”, но фактически произвольные значе-
ния так называемой эффективности общих оболочек
и параметра энергии связи оболочки звезды α = 1 и
λ = 0.5 соответственно, Ховис-Афлербах и др. (2024)
оценили, что доля гелиевых звезд, формирующихся в
общих оболочках, не превышает ≃20%.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

В настоящей работе найден новый класс пульси-
рующих звезд – гелиевые звезды с массой (2–7) M⊙,
сформировавшиеся в результате устойчивой потери
вещества в ТДС в так называемом случае B обмена
веществом (заполнение полости Роша более массив-
ным компонентом системы на стадии горения водо-
рода в слоевом источнике). Гелиевые звезды пульси-
руют, начиная с момента отделения от полости Роша
и пока их эффективная температура составляет Teff ≲
≲ (2.5–5) × 104 K. Верхний предел эффективных тем-
ператур возрастает с увеличением массы звезды. Ха-
рактерные значения периода колебанийΠ заключены
в пределах от нескольких часов до нескольких суток.

Численность пульсирующих гелиевых звезд в Галак-
тике оценивается как ≃1000.

Пульсации возбуждаются κ-механизмом, обуслов-
ленным максимумом непрозрачности при ионизации
гелия. Примечательно, что у массивных звезд этот ме-
ханизм работает в области красных гигантов, в то вре-
мя как у гелиевых звезд область его действия образу-
ет своего рода “полосу”, захватывающую как область
красных гигантов, так и часть диаграммы ГР, включа-
ющую НГП и, частично, более горячую область, т.е.
зону, в которой действие κ-механизма обычно обу-
словлено возрастанием непрозрачности при иониза-
ции железа в гораздо более глубоких слоях звезды (на-
пример, у звезд типа β Cep).

Отличительной чертой колебаний является значи-
тельная амплитуда (до нескольких сотен км/с) изме-
нения скорости течения газа на внешней границе при
амплитуде изменения болометрического блеска ∆Mbol
не более одной звездной величины. Вместе с высо-
кой эффективной температурой пульсирующих гели-
евых звезд (104 K ≲ Teff ≲ 5 × 104 K) полученные
выше оценки Π, ∆Mbol и ∆Ur могут быть использова-
ны в качестве критерия, на основании которого об-
наруженная переменная звезда может быть класси-
фицирована как обнаженная гелиевая звезда, внеш-
ние слои которой были потеряны на стадии заполне-
ния ею полости Роша. Также значительные измене-
ния скорости течения газа во внешних слоях пульси-
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рующей звезды предполагают возникновение перио-
дических ударных волн в звездной атмосфере. При-
нимая во внимание относительно высокое содержа-
ние водорода (см. табл. 1) в оболочках рассмотренных
моделей гелиевых звезд, можно ожидать, что одним
из индикаторов нелинейных звездных пульсаций бу-
дут эмиссионные линии водорода, возникающие на
фронте ударной волны в течение каждого цикла ко-
лебаний вблизи максимума блеска.

Следует отметить, что пульсирующие гелиевые
звезды могут быть компонентами ТДС с орбитальны-
ми периодами, достигающими 7–8 лет, а их спутника-
ми могут быть звезды типа Be.

Авторы выражают благодарность К.А. Постнову за
внимание к работе и полезные советы. Они также
признательны рецензентам за критические замеча-
ния, позволившие исправить неточности и улучшить
изложение материала. Работа А.Г. Куранова выпол-
нена в рамках государственного задания МГУ имени
М.В. Ломоносова.
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