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Определены фундаментальные параметры (эффективная температура Teff, поверхностное ускорение силы тя-
жести и радиус) и химический состав для шести звезд спектральных классов А-В: HD 186689 (υAql), HD 58142
(21 Lyn), HD 145788, HD 192907 (κ Cep), HD 85504 (7 Sex) и HD 38899 (134 Tau) на основе анализа спектров
высокого разрешения и спектрофотометрических наблюдений. Содержание химических элементов опреде-
лено в приближении локального термодинамического равновесия (ЛТР) для 25 элементов от Li до Nd и для
18 из них – с учетом отклонений от ЛТР (не-ЛТР). У υ Aql, 21 Lyn и κ Cep, которые в литературе относятся к
нормальным звездам, не-ЛТР содержание элементов от He до Fe, действительно, согласуется с солнечными
значениями в пределах 0.1 dex, но наблюдаются избытки Co, Ni, Zn, Sr, Y, Zr, Ba относительно солнечного со-
держания, и их величина коррелирует с Teff звезды. Таким образом, подтверждена температурная зависимость
избытков Zn, Sr, Y, Zr, Ba, обнаруженная в наших предыдущих работах для нормальных звезд, и впервые най-
дена аналогичная зависимость для Co и Ni. HD 145788 c общим избытком элементов группы железа 0.17 dex
находится на начальной стадии превращения в Аm-звезду. Профили линий в спектрах 7 Sex и 134 Tau свиде-
тельствуют о том, что это быстровращающиеся звезды, видимые с полюса, и их анализ требует использования
методов, учитывающих несферичность звезды.
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ВВЕДЕНИЕ

Химические аномалии представляют большой ин-
терес для изучения и понимания физики процессов в
звездах. Звезды наследуют химический состав области
своего образования, однако в ходе эволюции в атмо-
сферах звезд могут возникать отклонения в содержа-
нии химических элементов от первоначального (ано-
малии). Предполагается, что происхождение анома-
лий в атмосферах звезд Главной Последовательности
(ГП) с малыми скоростями вращения V < 120 км с−1

(Абт, 2000) связано с процессами атомной диффузии
(Мишо, 1970; Ватсон, 1970). В атмосферах звезд про-
исходит дрейф элемента по глубине под совместным
действием силы радиационного давления и силы тя-
жести. Турбулентное перемешивание и потеря мас-
сы с постоянной скоростью могут уменьшить анома-
лии элементов. Существуют A-B звезды с различными
типами химических аномалий, такие как магнитные
Ap (SiSrCrEu) и немагнитные более горячие (Hg-Mn)
звезды, звезды с усиленными линиями металлов (Am)
и, наоборот, c ослабленными линиями металлов (ти-
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па λ Boo). Нет четкого критерия определения нор-
мальных А-звезд, но считается, что эти звезды пока-
зывают близкие к солнечным значениям содержания
химических элементов от легких до элементов желез-
ного пика в пределах ошибок определения (см., на-
пример, Ройер и др., 2014).

В работе Абта (2009) было высказано предпо-
ложение, что медленно вращающиеся нормальные
А-звезды являются молодыми объектами без химиче-
ских аномалий, которые впоследствии станут звезда-
ми Am или Ap. Причем звезды спектральных классов
A0-A3 IV и V могут стать Ap(SrCrEu) после некоторого
времени на Главной Последовательности, а A4-F1 IV
и V в составе двойных систем с орбитальными перио-
дами 2–10 дней – Am-звездами, поскольку скорости
вращения уменьшены приливными взаимодействия-
ми.

Для понимания механизмов образования аномалий
содержания химических элементов необходимы
точные определения содержания элементов от
легких до редкоземельных элементов для каж-
дой группы химически-пекулярных звезд. Модели
внутреннего строения и эволюции звезд зависят
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от непрозрачности и требуют точных определе-
ний химического состава. Для того чтобы сделать
однозначные выводы о различиях в содержаниях
между нормальными А-звездами и Солнцем, а также
между нормальными и Am-звездами, необходимо
рассмотреть формирование спектральных линий. Од-
нако почти все исследования содержаний А-В звезд
проводились в рамках предположения о локальном
теормодинамическом равновесии (ЛТР, LTE – local
thermodynamic equilibrium), за исключением отдель-
ных звезд или отдельных химических элементов. Учет
отклонений от локального термодинамического рав-
новесия (не-ЛТР, NLTE) является более физически
реалистичным подходом при анализе формирования
спектров звезд.

В работах Машонкиной и др. (2020) и Романовской
и др. (2023) проводилось исследование спектров A-B
звезд с узкими линиями для 26 химических элемен-
тов, причем для 18 из них – с учетом отклонения от
локального термодинамического равновесия. Пока-
зано, что у нормальных А-звезд с учетом не-ЛТР эф-
фектов уменьшается разброс в содержаниях химиче-
ских элементов от He до Ni до ±0.15 dex относительно
солнечного содержания. Также были обнаружены из-
бытки содержания элементов Zn, Sr, Y, Zr, Ba и зави-
симость этих избытков от эффективной температуры
с максимумом в области 10 000 К. Машонкина и Фа-
деев (2024) показали, что в нормальных звездах содер-
жание Ca и Sc с учетом положительных не-ЛТР по-
правок может отличаться на ±0.20 dex от солнечного
значения.

Целью работы является расширение выборки нор-
мальных А-B звезд с надежно определенным содержа-
нием химических элементов. Это особенно необходи-
мо для уточнения зависимости содержания тяжелых
элементов (Zn, Sr, Y, Zr, Ba) от эффективной темпе-
ратуры у нормальных звезд, поскольку в предыдущих
статьях отсутствуют данные в диапазонах 8000–9000 К
и 9500–12 000 К.

Статья организована следующим образом. Выбор
звезд исследования и источники наблюдений пред-
ставлены в разделе 1. Определение параметров атмо-
сфер описано в разделе 2. Анализ химического состава
и обсуждение полученных результатов представлены в
разделе 3. В разделе 4 описано заключение.

1. ЗВЕЗДЫ ИССЛЕДОВАНИЯ И НАБЛЮДЕНИЯ

1.1. Выборка звезд

В новую выборку звезд вошли медленно вращаю-
щиеся звезды с узкими линиями с эффективными
температурами 8000–10 700 К. Литературные данные
о фундаментальных параметрах звезд (эффективная
температура Teff, логарифм ускорения силы тяжести
lоg g и металличность [Fe/H]) представлены в табл. 1.

HD 186689 (υ Aql) по каталогу Каули и др. (1969)
относится к спектральному классу A3IV. Химический

состав был впервые получен в работе Эрспамера и
Норта (2003) и указывает на принадлежность к нор-
мальным А-звездам.

HD 58142 (21 Lyn) является звездой спектрально-
го класса A1V по каталогу Каули и др. (1969). В рабо-
те Адельмана (1994) было показано, что в атмосфере
HD 58142 содержание химических элементов увели-
чивается с ростом атомного номера, указывающее на
принадлежность звезды к спектральному классу Am.
Однако Ройер и др. (2014) показали, что звезда отно-
сится скорее к нормальным А-звездам, чем к Am.

HD 145788 принадлежит к спектральному классу
A1 Si по каталогу Ренсона и Манфруа (2009). Содер-
жание химических элементов для звезды впервые бы-
ло определено в работе Фоссати и др. (2009). Было
показано, что звезда имеет химический состав, похо-
жий на Am-звезды, однако отсутствует дефицит CNO
и Sc. Поэтому авторы этой работы предположили, что
звезда не относится к Am и могла образоваться в об-
лаке с высокой металличностью. В выборке звезд из
работы Ройера и др. (2014) она имеет наименьшую
скорость вращения ve sin i и относится к нормальным
А-звездам.

HD 85504 (7 Sex) имеет спектральный класс A1 Mn
по каталогу Ренсона и Манфруа (2009). Адельман и
Пинтадо (1997) показали, что звезда имеет повышен-
ное содержание металлов по сравнению с другими
нормальными звездами с аналогичной Teff . Ройер и др.
(2014) относят ее к нормальным А-звездам.

HD 192907 (κ Cep) является звездой спектрального
класса B9 III и является нормальной звездой по ката-
логу Каули и др. (1969). Химический состав приведен
в работе Адельмана и др. (2011), где подтверждается
принадлежность κ Cep к нормальным А-звездам.

HD 38899 (134 Tau) относится к нормальным звез-
дам позднего спектрального класса B9.5 V по каталогу
Каули и др. (1969). Содержание химических элемен-
тов приводится в работе Адельмана (1991) и подтвер-
ждает принадлежность к нормальным звездам.

1.2. Наблюдения

Спектры высокого разрешения для звезд выбор-
ки были взяты из архивов следующих спектрографов:
ELODIE1 и SOPHIE2, установленных на 1.93-м те-
лескопе Обсерватории Верхнего Прованса. Наблюде-
ния проводились с 1993 по 2006 г. и с 2006 г. соот-
ветственно (разрешающая сила R = λ/δλ = 42 000,
в диапазоне 4000–6800 A; R = 75 000 в моде HR,
3872–3955 A); HARPS3 (High Accuracy Radial velocity
Planet Searcher), установленном на 3.6-м телеско-
пе обсерватории Ла-Силья в Чили (R = 115 000,
3782–6907 A); ESPaDOnS4 (Echelle SpectroPolarimetric

1http://atlas.obs-hp.fr/elodie/
2http://atlas.obs-hp.fr/sophie/
3https://archive.eso.org/scienceportal/home/
4https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/cfht/
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Таблица 1. Фундаментальные параметры исследуемых звезд из литературы

Звезда Teff lоg g [Fe/H] Ссылка

υ Aql 7906 4.21 –0.050 Эрспамер и Норт (2003)

7700 3.70 –0.300 Гебран и др. (2016)

8166 Зорес и Ройер (2012)

21 Lyn 9532 3.74 Адельман (1994)

9520 3.79 –0.004 Ройер и др. (2014)

10000 3.80 0.000 Гебран и др (2016)

9462 Зорес и Ройер (2012)

9384 3.74 Такеда (2021)

HD 145788 9600 Глаголевский (1994)

9750 3.70 0.460 Фоссати и др. (2009)

9594 Зорес и Ройер (2012)

9410 3.73 –0.137 Ройер и др. (2014)

κ Cep 10350 3.65 –0.050 Cмит и Дворецкий (1993)

10340 3.64 –0.050 Адельман и др. (2002)

10675 3.65 –0.050 Сенарро и др. (2007)

10444 3.97 –0.180 Прюньель и др. (2011)

10929 3.94 0.000 Гарсия Перес и др. (2021)

7 Sex 10110 3.61 –0.020 Адельман и Филип (1992)

10135 3.69 –0.250 Адельман и Пинтадо (2000)

10000 Зорес и Ройер (2012)

10200 3.82 0.033 Ройер и др. (2014)

134 Tau 10825 3.88 0.080 Адельман (1991)

10850 4.10 –0.050 Cмит и Дворецкий (1993)

10750 4.10 0.000 Адельман и др. (2002)

10520 Зорес и Ройер (2012)

11160 4.09 Морел и др. (2022)

10916 3.88 –0.170 Хурихан и др. (2023)

Device for the Observation of Stars at CFHT), установ-
ленном на 3.6-м телескопе обсерватории Мауна-Кеа
на Гавайях (R = 85 000, 3670–10480 A).

Для 134 Tau использовался спектр, усредненный по
11 наблюдениям в октябре 2023 г., которые были по-
лучены одним из соавторов статьи (Н. Серебряко-
вой) со спектрографом HERMES (High-Efficiency and
high-Resolution Mercator Echelle Spectrograph, Раскин
и др., 2011), установленном на 1.2-м телескопе Мер-
катор на Канарских островах в Испании (R = 85 000,
3750–9000 A). Калибровка длин волн была проведе-
на по эмиссионному спектру торий-аргон-неоновой
лампы. Обработка данных наблюдаемых звездных
спектров была выполнена с помощью инструментов,
описанных в статье Раскина и др. (2011).

Источники наблюдений для каждой звезды со зна-
чением отношения сигнала к шуму в области 5550 A
приведены ниже.

• υ Aql: ELODIE – S/N = 285.

• 21 Lyn: ELODIE – S/N = 395.

• HD 145788: HARPS – S/N = 130.

• 7 Sex: SOPHIE – S/N = 295.

• κ Cep: ESPaDOnS – S/N = 315.

• 134 Tau: HERMES – S/N = 600.

Для построения распределения энергии в спек-
тре были использованы фотометрические наблюде-
ния в различных спектральных диапазонах. Спек-
трофотометрические наблюдения в УФ-диапазоне
1900–3000 A взяты со спутника TD1 (European Space
Research Organisation (ESRO) satellite, Томпсон и др.,
1978), который измерял в ультрафиолетовом диапа-
зоне абсолютные потоки в четырех узких полосах с
помощью телескопа S2/68. Использованы спектры
из архива со спутника IUE (International Ultraviolet
Explorer)5. В оптическом диапазоне были использова-

5http://archive.stsci.edu/iue/

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 51 № 1 2025



16 РОМАНОВСКАЯ и др.

Таблица 2. Фундаментальные параметры атмосфер для звезд выборки, полученные методами SED и SME
Звезда Teff , lоg g [Fe/H] ξt, ζRT, ve sin i, R/R⊙ L/L⊙ Параллакс E(B − V) Метод

K км с−1 км с−1 км с−1 mas

υ Aql 8000 ± 77 4.19 ± 0.17 1.59 ± 0.06 0.97 ± 0.05 18.88* 0.002** SED

7960 ± 157 4.34 ± 0.56 −0.16 ± 0.14 3.04 ± 0.58 0.0 33.62 ± 3.79 SME

21 Lyn 9555 ± 27 3.75 3.56 ± 0.09 1.98 ± 0.02 11.90* 0.020 SED

9650 ± 200 3.75 ± 0.10 −0.04 ± 0.13 2.05 ± 0.55 0.0 18.24 ± 2.35 SME

HD 145788 9720 ± 6 3.70 4.13 ± 0.12 2.14 ± 0.02 6.06* 0.177*** SED

9800 ± 301 3.73 ± 0.18 0.16 ± 0.19 1.70 ± 0.62 0.0 9.34 ± 1.86 SME

κ Cep 10235 ± 13 3.70 4.35 ± 0.09 2.27 ± 0.02 10.18* 0.007** SED

10250 ± 107 3.74 ± 0.04 0.01 ± 0.13 0.60 ± 0.99 0.0 24.15 ± 2.53 SME

7 Sex 10000 ± 11 3.74 ± 0.02 4.28 ± 0.08 2.22 ± 0.01 4.99* 0.014** SED

10195 ± 271 3.70 ± 0.13 0.28 ± 0.21 1.08 ± 1.03 0.0 25.25 ± 5.61 SME

134 Tau 10610 ± 10 3.89 ± 0.14 2.90 ± 0.07 1.98 ± 0.02 11.60* 0.001** SED

10250 ± 139 3.88 ± 0.05 −0.01 ± 0.18 0.45 ± 1.80 0.0 27.29 ± 4.72 SME

*Gaia Collaboration (2020), **Лаллемент и др. (2014), ***Грин и др. (2018).

ны спектрофотометрические наблюдения из каталога
Адельмана и др. (1989), а звездные величины в системе
Johnson взяты на сайте Simbad6 из каталогов Хог и др.
(2000) и Дукати (2002). В ближнем инфракрасном диа-
пазоне данные взяты из каталога 2MASS (2Micron All-
Sky Survey, Кутри и др., 2003), который содержит об-
зор всего неба в фильтрах J (1.25 мкм), H (1.65 мкм) и
Ks (2.17 мкм). Наблюдения переведены в абсолютные
потоки по калибровкам из работы Коэн и др. (2003).

2. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ЗВЕЗД

Как видно из литературных данных, приведенных в
табл. 1, разброс определений Teff у одной звезды может
достигать 660 К. Поэтому для анализа химического
состава для каждой звезды из выборки были опреде-
лены фундаментальные параметры двумя методами,
описание которых приводится ниже.

2.1. Спектроскопическое определение
с использованием программы SME

Первый метод – определение Teff, lоg g, металлич-
ности ([M/H]), скорости вращения (ve sin i), микро-
турбулентной скорости (ξt) и макротурбулентной ско-
рости (ζRT) c помощью пакета программ Spectroscopy
Made Easy (SME, Пискунов и Валенти, 2017).

Код рассчитывает синтетические спектры в сет-
ках моделей атмосфер в заданных спектральных об-
ластях и выполняет подгонку к наблюдаемым спек-
трам, находя наилучшее решение для подгоняемых
параметров. Мы использовали сетку LLmodels (Шу-
ляк и др., 2004). Для подгонки использовалась опти-
ческая область спектра, включая линии водорода, ко-
торые чувствительны к вариациям Teff и, особенно,
lоg g в интересующем нас диапазоне звездных пара-
метров. Используемые спектральные интервалы со-
держат ≈300 линий Fe I и Fe II различных энергий воз-
буждения с эквивалентными ширинами (EW) от 3 до
110 мA. Они участвуют в уточнении Teff и lоg g, так как

6https://simbad.cds.unistra.fr/simbad/

учитывается ионизационное равновесие (согласие со-
держания элемента, определенного по линиям разных
стадий ионизации), а также в определения ξt. Микро-
турбулентная скорость определяется путем согласо-
вания содержания, полученного по индивидуальным
линиям с разной эквивалентной шириной.

Результаты определения параметров атмосфер
звезд по анализу наблюдаемых спектров (SME) пред-
ставлены в табл. 2. Ошибки определения фундамен-
тальных параметров включают ошибки спектральных
наблюдений, неопределенности проведения конти-
нуума, точность лабораторных измерений атомных
параметров спектральных линий, а также ошибки
самой процедуры подгонки свободных параметров
(ковариационная матрица), которые составляют не
более 5 К для Teff и 0.01 для lоg g, [Fe/H], ξt и ve sin i.

2.2. Фотометрические параметры
по спектральному распределению энергии

Второй метод – подгонка теоретического спек-
трального распределения энергии (SED – Spectral
Energy Distribution) к наблюдениям путем варьи-
рования параметров атмосферы из сетки моделей
LLmodels, где поглощение в каждой линии рассчиты-
вается с учетом индивидуального химического соста-
ва.

При подгонке одновременно могут варьирьиро-
ваться Teff, lоg g, [Fe/H] и радиус звезды (R/R⊙). Одна-
ко для предположительно Am-звезды HD 145788 ис-
пользовался фиксированный химический состав, по-
лученный по методу SME, а для нормальных A-звезд
фиксировалось солнечное содержание химических
элементов. Также при расчете потоков мы учитываем
межзвездное поглощение, поскольку звезды располо-
жены на разных расстояниях (см. табл. 2.). Поправ-
ка на межзвездное покраснение применялась соглас-
но кривой экстинкции из работы Фитцпатрика (1999)
с Av = 3.1 × E(B − V). Значения E(B − V) были взяты
из карты распределения пыли (Лаллемент и др., 2014):
0.002± 0.016 (υAql), 0.002± 0.015 (21 Lyn), 0.151± 0.023
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(HD 145788), 0.007± 0.015 (κCep), 0.014± 0.017 (7 Sex)
и 0.001 ± 0.015 (134 Tau).
υ Aql. Для расчета SED использовались фотометри-

ческие данные из каталогов TD1, Johnson, 2MASS. Ва-
рьировались радиус, Teff и lоg g. В результате мы по-
лучили значения, близкие к параметрам, полученным
по SME. Для дальнейших расчетов использовали мо-
дель из SME. Спектральное распределение энергии
для звезды представлено на рис. 6.

21 Lyn. Для расчета использовались данные наблю-
дений из каталогов Адельмана, TD1 и 2MASS. Лога-
рифм ускорения свободного падения lоg g был взят
из решения SME и зафиксирован на 3.75. Эффектив-
ная температура Teff для 21 Lyn оказалась отличной от
SME на 220 К, что несколько больше ошибки опре-
деления температуры по SME ±200 K. Увеличение
E(B − V) в пределах ошибок определения позволяет
согласовать фотометрическую температуру с той, что
получена по SME, в пределах 100 К. На рис. 1а пред-
ставлены SED для решения SME и SED с увеличен-
ным поглощением.

HD 145788. В оптической области были доступ-
ны только фотометрические данные Tycho-2, а в
УФ- и ИК-областях также использовались данные
из каталогов TD1, IUE и 2MASS. Из архива IUE
доступны только наблюдения с инструментом SWP
(1150–1980 A). Аналогично 21 Lyn, мы зафиксировали
lоg g на значении 3.70. Teff

SED с поглощением из карты
пыли по Лаллемент (2014) получилась равной 9430 К,
что на 370 К меньше, чем Teff

SME (табл. 2). Однако
звезда является одной из самых удаленных из звезд
нашей выборки (165 пк), и есть вероятность, что зна-
чение E(B − V) по Лаллемент (2014) недооценено. По
карте пыли из работы Грин и др. (2018) мы получили
E(B−V) = 0.177, что согласуется с увеличенным в пре-
делах ошибки значением из Лаллемент (2014). Расче-
ты SED c этим значением покраснения и с зафикси-
рованным по решению SME lоg g = 3.70 показали хо-
рошее согласие по Teff, полученными двумя методами.
На рис. 1б приведены расчеты по двум моделям: SME
с параметрами модели атмосферы 9800g3.73 и SED с
параметрами 9720g3.70.
κ Cep. Использовались данные из каталогов: IUE,

TD1, Адельмана и 2MASS. При расчете величина lоg g
была получена из SME и зафиксирована на значении
3.70. В результате была получена модель атмосферы с
параметрами 10235g3.70, что очень хорошо согласует-
ся с решением SME: 10250g3.74. Анализ химическо-
го состава был проведен с моделью 10250g3.74. Спек-
тральное распределение энергии для звезды представ-
лено на рис. 7.

Для проверки адекватности выбранной модели ат-
мосферы по решению SME для звезд 21 Lyn и
HD 145788, мы построили графики зависимости со-
держания по отдельным линиям Fe I– II от приведен-
ной эквивалентной ширины и от потенциала возбуж-
дения (рис. 2). В первом случае отсутствие зависимо-

сти подтверждает правильность полученной микро-
турбулентной скорости ξt, а во втором – параметров
атмосферы Teff и lоg g.

7 Sex. Для звезды доступны наблюдения IUE и TD1
в УФ-области, в оптической области – Johnson, и в
ИК-области – 2MASS. Несмотря на ограниченное ко-
личество данных в оптической области, значения па-
раметров моделей по SED и SME получились близ-
кими в пределах ошибок определений с разницей в
Teff = 195 К: 10000g3.74 и 10195g3.70 соответствен-
но. Спектральное распределение энергии для звезды
с двумя моделями атмосфер представлено на рис. 8.

134 Tau. Для звезды есть наблюдения из тех же ката-
логов, что и для κ Cep. Полученная Teff

SED = 10 610 K
на 360 К больше, чем Teff

SME, при этом lоg g, получен-
ные по двум методам, сходятся с разницей 0.01 dex.
Спектральное распределение энергии для звезды с
двумя моделями атмосфер представлено на рис. 9.

В звездах 7 Sex и 134 Tau форма профилей спек-
тральных линий аналогична наблюдаемым у извест-
ной А-звезды Веги, которая является быстровраща-
ющейся звездой, наблюдаемой с полюса вращения
(Хилл и др., 2010). Сравнение профилей линий в спек-
трах 134 Tau, 7 Sex и Веги показано на рис. 3. Мы
делаем вывод, что 7 Sex и 134 Tau также являются
звездами с большой скоростью осевого вращения, на-
блюдаемыми с полюса. Быстрое вращение изменяет
форму звезды от сферически-симметричной к эллип-
соидальной, что приводит к неоднородному распре-
делению температуры по поверхности. В таких слу-
чаях определение параметров атмосферы и анализ
химического состава требуют учета несферичности
и неоднородного распределения Teff/lоg g по поверх-
ности звезды, что планируется провести в ближай-
шее время. В рамках нашего исследования парамет-
ры атмосферы и содержание химических элементов
в звездах определялось в приближении сферически-
симметричной звезды. Различие в Teff между разными
методами определения для 134 Tau, вероятно, связано
с неоднородностью распределения Teff по поверхно-
сти звезды.

Результаты определения параметров атмосфер по
SED с подобранным поглощением E(B−V) представ-
лены в табл. 2. Для анализа химического состава для
звезд выборки в дальнейшем мы использовали модели
с параметрами атмосфер, полученными по спектро-
скопии (SME).

3. СОДЕРЖАНИЕ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

3.1. Методы определения

Определение содержания химических элементов
проводилось методом подгонки синтетического
профиля спектральной линии к наблюдаемому по
программе BinMag6 (Кочухов, 2018), позволяющей
варьировать содержание элемента, макротурбу-
лентную скорость, проекцию скорости вращения
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Рис. 1. Спектральные распределения энергии для 21 Lyn (а) и HD 145788 (б). Черной линией показано распределение энер-
гии, полученное в результате расчетов с подобранным значением E(B − V) = 0.177 и 0.02 соответственно; красной линией
представлено спектральное распределение энергии по решению SME.

на луч зрения ve sin i и лучевую скорость звезды Vr.
Для элементов до Ba содержания химических эле-
ментов получены по линиям нейтральных атомов и
первых ионов, а для редкоземельных элементов –
по линиям первых и вторых ионов. Синтетические
спектры рассчитывались с помощью кода SynthVb
(Цымбал и др., 2019), который позволяет получать не
только ЛТР, но и не-ЛТР профили исследуемых спек-
тральных линий путем использования b-факторов
(отношение заселенности уровней атомов в не-ЛТР к
ЛТР), рассчитанных по программе DETAIL (Батлер и
Гиддингс, 1985; Пшибылла и др. 2011).

Содержание элементов приведено в стандартной
шкале, log ε = log(NEl/NH) + 12, где NEl и NH – концен-
трации атомов данного химического элемента и водо-
рода соответственно. Для каждой звезды полный спи-
сок линий с атомными параметрами и индивидуаль-
ными содержаниями доступен онлайн.

Пример организации списка линий приведен в
табл. 3.

3.2. Учет не-ЛТР эффектов

Для большей части химических элементов содержа-
ние определено как в рамках ЛТР, так и при отказе
от предположения ЛТР. Не-ЛТР расчеты для C I- II,
N I, O I, Ne I, Na I, Mg I- II, Si I- II, Ca I- II, Sc II,
Ti II, Fe I- II, Zn I, Sr II, Y II, Zr II и Ba II выполне-
ны с использованием модифицированной версии ко-
да DETAIL и моделей атомов, разработанных ранее
в нашей группе (см. ссылки в статьях Машонкиной
и др. (2020) и Романовской и др. (2023), а также ра-
боты Машонкиной, 2024; Машонкиной и Рябчико-
вой, 2024). Отметим, что модель атома Ti I- II усовер-
шенствована путем включения современных данных
о возбуждении уровней Ti II электронным ударом из
квантово-механических расчетов Таяла и Зацаринно-
го (2020). Эта модификация не привела к существен-
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Рис. 2. Содержание Fe I (черные точки) и Fe II (синие точки) по отношению к приведенным эквивалентным ширинам
log(Wλ/λ) и потенциалу ионизации Ei для звезд 21 Lyn и HD 145788. Содержание Fe на Солнце представлено сплошной
горизонтальной линией. Штриховыми линиями указаны различия на ±0.12 от солнечного содержания. Величина r на гра-
фиках – коэффициент корреляции Пирсона.
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Таблица 3. Список линий, использованных для ЛТР и не-ЛТР анализа содержаний для звезд исследования

Ссылки Содержание, log ε
υ Aql . . . 134 Tau

Ион Длина волны, A Ei, эВ logg f gf HFS IS ЛТР не-ЛТР . . . ЛТР не-ЛТР

. . .

He 1 4471.4730 20.9641 −0.2780 WSG – – – – . . . 11.14 –

He 1 5875.6150 20.9641 0.4090 WSG – – – – . . . 11.22 –

. . .

Ba 2 4554.0319 0.0000 0.1700 MW BBW/VAHW WABM 2.10 2.08 . . . 2.41 2.74

Ba 2 4934.0750 0.0000 −0.1500 MW BWE-BBW/VAHW WABM 2.49 2.46 . . . 2.44 2.78

Ba 2 5853.6742 0.6043 −1.0000 MW VBDSb/VAHW VBDS 2.22 2.35 . . . – –

. . .

Таблица полностью доступна в текстовом формате в онлайн-журнале. Здесь приведена часть таблицы для ознакомления с
ее формой и содержанием. Ссылки на константы HFS приведены для нижнего и верхнего уровней. WSG = Визе и др. (1966);
MW = Майлс и Визе (1969); BBW = Бекер и др. (1981); VAHW = Виллемуа и др. (1993); WABM = Вендт и др. (1984); BWE =
= Блатт и Верт (1982); VBDSb = ван Хов и др. (1985); VBDS = ван Хов и др. (1982).

ному изменению не-ЛТР поправок для линий Ti II по
сравнению с предыдущими расчетами.

Для звезды υ Aql определено содержание лития по
линии Li I 6707 A, которая имеет эквивалентную ши-
рину EW = 22.2 мA. Отметим, что линию лития у этой
звезды обнаружили Жербальди и др. (1995) в спектре с
низким S/N, но измерили меньшую EW = 8 мA и со-
держание лития не определяли. Не-ЛТР расчеты для
Li I выполнены с использованием модели атома, по-
строенной Ситновой и др. (2023). Полученное содер-
жание лития log ε(Li) = 3.30 (ЛТР) и 3.21 (не-ЛТР)
согласуется с современным метеоритным значением
log ε(Li) = 3.27 (Лоддерс, 2021) и с содержанием ли-
тия у звезд с Teff ⩾ 6800 K и металличностью, близкой
к солнечной (Боесгард и др., 2016; Шарбоннель и др.,
2021).

Такеда и др. (2009) получили не-ЛТР содержание
Na I для широкой выборки А-звезд и показали, что
резонансные линии Na I не могут использоваться в
качестве надежного индикатора содержания. Поэто-
му для звезд из текущей выборки мы приводим значе-
ния содержания Na I по одной линии 5682 A для звезд
υAql и 7 Sex, и по линиям 5682 и 5688 A для 21 Lyn. Не-
ЛТР поправки не превышают 0.11 dex по абсолютной
величине.

Содержание Не, Al, S II, V, Cr, Mn, Co, Ni, La и Nd
определено в предположении ЛТР. Как показали Ко-
ротин и Рябчикова (2018), в исследуемом диапазоне
параметров атмосфер не-ЛТР ведет к уменьшению со-
держания гелия не более, чем на 0.04 dex.

В атмосферах исследуемых звезд ионы Al II, S II,
V II, Cr II, Mn II, Co II, Ni II доминируют в содер-
жании своего элемента, и их концентрация сохраняет
равновесные значения. Поэтому мы ожидаем неболь-
шие отклонения от ЛТР для линий этих ионов, и в
качестве окончательного принимаем полученное ЛТР

содержание. Для контроля содержание также опреде-
лялось по линиям нейтральных атомов Al I, S I, Cr I,
Mn I, Ni I, если они присутствовали в спектре. Резо-
нансные линии Al I измерены только у звезды 134 Tau.
Как показано в статье Романовской и др. (2023), не-
ЛТР поправки для них могут превысить +0.3 dex. Мо-
дель атома S I была модернизирована (Коротин и Ки-
селев, 2024) по сравнению с той, что использовалась
Романовской и др. (2023). В исследуемом диапазоне
параметров атмосфер не-ЛТР поправки для линий S I,
которые мы используем для определения содержания
серы, не превышают 0.03 dex по абсолютной вели-
чине.

Для Cr I, Mn I, Ni I не-ЛТР расчеты в исследуе-
мом диапазоне параметров атмосфер не проводились,
но по аналогии с Ti I и Fe I, которые имеют близкие
энергии ионизации (между 6.8 и 7.9 эВ), применение
не-ЛТР подхода должно вести к ослаблению их спек-
тральных линий и положительным не-ЛТР поправ-
кам к содержанию. Отрицательная разница в ЛТР со-
держании между нейтральными атомами и первыми
ионами свидетельствует в пользу принятых парамет-
ров атмосферы звезды.

Небольшие отклонения от ЛТР ожидаются для
линий Nd III, которые используются для опреде-
ления содержания неодима, поскольку Nd III –
это доминирующая стадия ионизации в атмосферах
с Teff > 9400 K.

3.3. Результаты

Средние содержания для всех элементов в атмосфе-
рах звезд выборки приведены в табл. 4 и представ-
лены на рис. 4. Для звезд υ Aql, 21 Lyn, HD 145788
и κ Cep в случае, когда разница между содержанием,
полученным по линиям двух стадий ионизации, пре-
вышает 0.20 dex, в качестве среднего значения исполь-
зовалось содержание, полученное по линиям одно-
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Таблица 4. Средние значения содержания химических элементов, полученных с применением ЛТР (L) и не-ЛТР (N) мето-
дов для звезд выборки. nl – число спектральных линий, использованных для расчета содержания. В скобках указано стан-
дартное отклонение. В случае, когда использовалась одна линия – отклонение принято равным 0.2. В последнем столбце
указаны современные метеоритные содержания элементов в Солнечной системе из работы Лоддерс (2021)
Звезда υ Aql 21 Lyn HD 145788 κ Cep 7 Sex 134 Tau Солнце
Teff 7960 9650 9800 10250 10195 10253
lоg g 4.34 3.75 3.73 3.74 3.70 3.88
Ион log ε [X/H] nl log ε [X/H] nl log ε [X/H] nl log ε [X/H] nl log ε [X/H] nl log ε [X/H] nl log ε
He I L 10.88(06) –0.04 3 10.91(06) –0.01 3 11.00(04) 0.08 4 11.04(04) 0.12 4 11.19(07) 0.27 4 10.924
Li I L 3.30(20) 0.03 1 3.27
Li I N 3.21(20) –0.06 1
C I L 8.30(09) –0.17 4 8.28(13) –0.19 5 8.41(13) –0.06 4 8.27(13) –0.20 6 8.91(14) 0.44 7 8.44(17) –0.03 6 8.47
C I N 8.27(08) –0.20 4 8.26(13) –0.21 5 8.47(09) 0.00 4 8.39(08) –0.08 6 8.95(12) 0.48 7 8.49(15) 0.02 6
N I L 8.17(09) 0.32 12 8.04(07) 0.19 8 7.85
N I N 7.92(08) 0.07 12 7.79(05) –0.06 8
O I L 8.71(07) –0.02 4 8.67(05) –0.06 9 8.88(11) 0.12 11 9.06(44) 0.33 14 9.04(09) 0.31 15 9.07(45) 0.34 16 8.73
O I N 8.69(08) –0.04 4 8.62(05) –0.11 9 8.73(09) 0.00 11 8.70(05) –0.03 14 8.92(07) 0.19 15 8.61(13) –0.12 16
Ne I L 8.58(20) 0.43 1 8.70(08) 0.55 9 8.15
Ne I N 8.38(20) 0.23 1 8.53(10) 0.38 9
Na I L 6.23(20) –0.04 1 6.43(07) 0.16 2 7.01(20) 0.74 1 6.27
Na I N 6.14(01) –0.13 1 6.32(07) 0.05 2 6.90(20) 0.63 1
Mg I L 7.38(12) –0.14 7 7.54(14) 0.02 6 7.81(18) 0.29 7 7.86(32) 0.34 8 8.06(17) 0.54 7 7.52(21) 0.00 8 7.52
Mg I N 7.34(10) –0.18 7 7.44(02) –0.08 6 7.71(05) 0.19 7 7.68(11) 0.16 8 7.98(07) 0.46 7 7.49(18) –0.03 8
Mg II L 7.55(15) 0.03 4 7.39(13) –0.13 4 7.64(13) 0.12 5 7.67(16) 0.15 11 7.78(17) 0.26 6 7.58(14) 0.06 6
Mg II N 7.52(19) 0.00 4 7.34(04) –0.18 4 7.60(07) 0.08 5 7.60(08) 0.08 11 7.75(12) 0.23 6 7.56(10) 0.04 6
[Mg/H]mean N –0.11(17) –0.12(06) 0.15(08) 0.11(10) 0.36(15) 0.00(15)
Al I L 6.06(04) –0.36 2 6.42
Al II L 6.60(20) 0.18 1 6.47(03) 0.05 3 6.63(04) 0.21 3 6.48(04) 0.06 3 6.55(09) 0.13 3 6.37(03) –0.05 3
[Al/H]mean L 0.18(20) 0.05(03) 0.21(04) 0.06(04) 0.13(09) –0.17(16)
Si I L 7.40(20) –0.11 1 7.15(20) –0.36 1 7.07(20) –0.44 1 7.51
Si I N 7.39(20) –0.12 1 7.45(20) –0.06 1 7.55(20) 0.04 1
Si II L 7.48(09) –0.03 4 7.52(19) 0.01 9 7.77(18) 0.26 11 7.65(16) 0.14 13 7.95(20) 0.44 10 7.77(21) 0.26 12
Si II N 7.39(09) –0.12 4 7.36(08) –0.15 9 7.56(12) 0.05 11 7.54(16) 0.03 13 7.78(12) 0.27 10 7.66(18) 0.15 12
[Si/H]mean N –0.12(08) –0.14(08) 0.05(12) 0.03(16) 0.27(12) 0.15(18)
S I L 7.07(15) –0.08 4 7.44(07) 0.29 2 7.89(24) 0.74 3 7.44(02) 0.29 2 7.15
S I N 7.05(16) –0.10 4 7.44(07) 0.29 2 7.91(24) 0.76 3 7.47(02) 0.32 2
S II L 7.35(11) 0.20 2 7.34(07) 0.19 3 7.19(17) 0.04 6 7.51(12) 0.36 7 7.21(12) 0.06 8
[S/H]mean L –0.10(16) 0.25(09) 0.19(07) 0.04(17) 0.47(24) 0.10(14)
Ca I L 6.18(07) –0.09 12 6.24(13) –0.03 6 6.46(09) 0.19 6 6.21(20) –0.06 1 7.09(33) 0.82 4 6.01(20) –0.26 1 6.27
Ca I N 6.13(09) –0.14 12 6.46(10) 0.19 6 6.68(07) 0.41 6 6.68(20) 0.41 1 7.36(29) 1.09 4 6.44(20) 0.17 1
Ca II L 6.29(08) 0.02 6 6.21(05) –0.06 5 6.38(09) 0.11 6 6.14(12) –0.13 10 6.62(10) 0.35 7 6.14(10) –0.13 11
Ca II N 6.27(08) 0.00 6 6.38(04) 0.11 5 6.56(08) 0.29 6 6.50(09) 0.23 10 6.86(14) 0.59 7 6.46(07) 0.19 11
[Ca/H]mean N –0.09(11) 0.16(19) 0.35(10) 0.25(10) 0.77(32) 0.19(07)
Sc II L 3.02(04) –0.02 8 2.79(06) –0.25 8 3.09(06) 0.05 9 2.83(04) –0.21 5 3.48(12) 0.44 7 2.73(12) –0.31 5 3.04
Sc II N 3.01(07) –0.03 8 3.17(05) 0.13 8 3.42(05) 0.38 9 3.35(01) 0.31 5 3.99(10) 0.95 7 3.33(11) 0.29 5
Ti II L 4.93(09) 0.03 38 4.88(05) –0.02 41 5.12(06) 0.22 37 5.03(07) 0.13 31 5.27(10) 0.37 34 4.76(09) –0.14 30 4.90
Ti II N 4.90(08) 0.00 38 4.86(05) –0.04 41 5.09(05) 0.19 37 5.01(08) 0.11 31 5.23(12) 0.33 34 4.74(11) –0.16 30
V II L 4.02(06) 0.07 6 4.08(08) 0.13 6 4.24(10) 0.29 6 4.02(08) 0.07 3 4.29(09) 0.34 7 3.89(20) –0.06 5 3.95
Cr I L 5.45(12) –0.18 7 5.70(05) 0.07 7 5.86(08) 0.23 6 5.75(08) 0.12 2 6.23(13) 0.60 4 5.75(11) 0.12 6 5.63
Cr II L 5.63(13) 0.00 30 5.71(08) 0.08 41 5.87(07) 0.24 38 5.79(08) 0.16 32 6.01(13) 0.38 32 5.62(07) –0.01 30
[Cr/H]mean L –0.03(15) 0.07(09) 0.24(07) 0.16(08) 0.40(15) 0.01(09)
Mn I L 5.07(08) –0.40 5 5.57(15) 0.10 8 5.57(11) 0.10 4 6.07(25) 0.60 5 5.41(18) –0.06 3 5.47
Mn II L 5.63(20) 0.16 1 5.58(07) 0.11 5 5.68(04) 0.21 5 5.53(07) 0.06 3 5.71(12) 0.24 5 5.28(23) –0.19 3
[Mn/H]mean L –0.31(22) 0.10(13) 0.16(10) 0.06(07) 0.42(26) –0.12(22)
Fe I L 7.30(10) –0.15 23 7.45(07) 0.00 29 7.61(07) 0.16 27 7.47(08) 0.02 11 7.95(12) 0.50 28 7.40(11) –0.05 15 7.45
Fe I N 7.25(10) –0.20 23 7.54(07) 0.09 29 7.71(07) 0.26 27 7.60(08) 0.15 11 8.07(13) 0.62 28 7.52(12) 0.07 15
Fe II L 7.34(13) –0.11 35 7.48(07) 0.03 69 7.67(08) 0.22 68 7.51(10) 0.06 70 7.75(10) 0.30 70 7.46(10) 0.01 67
Fe II N 7.33(14) –0.12 35 7.48(07) 0.03 69 7.66(08) 0.21 68 7.52(10) 0.07 70 7.76(10) 0.31 70 7.47(11) 0.02 67
[Fe/H]mean N –0.15(13) 0.05(08) 0.23(08) 0.08(10) 0.40(18) 0.03(11)
Co II L 5.31(10) 0.45 2 5.29(20) 0.43 1 4.84(20) –0.01 1 4.86
Ni I L 6.09(17) –0.11 6 6.56(09) 0.36 16 6.74(10) 0.54 13 6.35(02) 0.15 2 6.81(03) 0.61 2 6.20
Ni II L 6.03(20) –0.17 1 6.64(07) 0.44 7 6.71(09) 0.51 5 6.65(12) 0.45 8 6.26(06) 0.06 3
[Ni/H]mean L –0.11(16) 0.39(09) 0.53(10) 0.15(02) 0.48(13) 0.06(06)
Zn I L 4.25(12) –0.36 3 5.27(07) 0.66 3 5.17(04) 0.56 2 4.89(16) 0.28 2 5.12(20) 0.51 1 4.61
Zn I N 4.32(11) –0.29 3 5.41(07) 0.80 3 5.32(03) 0.71 2 5.03(16) 0.42 2 5.25(20) 0.64 1
Sr II L 3.04(01) 0.16 2 3.31(01) 0.43 3 3.20(06) 0.32 4 2.77(01) –0.11 2 3.03(16) 0.15 3 2.43(01) –0.45 2 2.88
Sr II N 2.95(01) 0.07 2 3.77(04) 0.89 3 3.68(06) 0.80 4 3.41(03) 0.53 2 3.55(10) 0.67 3 3.08(02) 0.20 2
Y II L 2.35(10) 0.20 11 2.69(08) 0.54 8 2.58(09) 0.43 6 2.20(26) 0.05 4 2.74(02) 0.59 3 2.21(06) 0.06 2 2.15
Y II N 2.34(10) 0.19 11 3.26(05) 1.11 8 3.16(05) 1.01 6 2.89(20) 0.74 4 3.40(08) 1.25 3 2.93(01) 0.78 2
Zr II L 2.71(12) 0.16 5 3.20(04) 0.65 5 3.08(09) 0.53 3 2.71(14) 0.16 3 3.00(20) 0.45 1 2.44(20) –0.11 1 2.55
Zr II N 2.75(11) 0.20 5 3.49(03) 0.94 5 3.41(08) 0.86 3 3.19(15) 0.64 3 3.43(20) 0.88 1 2.88(20) 0.33 1
Ba II L 2.30(14) 0.13 4 3.03(09) 0.86 5 2.89(10) 0.72 3 2.41(09) 0.24 3 2.81(21) 0.64 3 2.17(02) 0.00 2 2.17
Ba II N 2.31(14) 0.14 4 3.36(08) 1.19 5 3.23(10) 1.06 3 2.80(10) 0.63 3 3.17(21) 1.00 3 2.53(02) 0.36 2
Nd III L 2.32(12) 0.87 3 1.95(12) 0.50 3 1.45
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Рис. 4. Среднее содержание химических элементов звезд выборки относительно метеоритного содержания в Солнечной
системе, взятого из работы Лоддерс (2021). Пунктирными линиями указан диапазон±0.12 dex, соответствующий 3σ ошибке
определения содержания в солнечной системе. (а), (б) – химический состав в не-ЛТР приближении, (в), (г) – в ЛТР.

кратно ионизованного элемента. В остальных случаях
и для быстровращающихся звезд 7 Sex и 134 Tau указа-
ны средние значения по всем стадиям ионизации. Мы
разделили звезды на две группы: А-В звезды с низкой
скоростью вращения показаны на рис. 4а, 4в, а быст-
ровращающиеся звезды – на рис. 4б, 4г. Не-ЛТР со-
держания показаны на верхних графиках (рис. 4а, 4б),
а ЛТР – на нижних (рис. 4в, 4г).

Нормальные звезды. Не-ЛТР анализ химического
состава для звезд υ Aql, κ Cep и 21 Lyn подтверждает
принадлежность звезд к нормальным А-звездам. Нор-
мальными считаются звезды с содержанием химиче-
ских элементов от He до Fe, близким к солнечным
значениям в пределах 3σ = ±0.12 dex определения со-
держания в атмосфере Солнца.

В спектре звезды υ Aql, кроме Li и Na, одной лини-
ей представлены также ионы Al II 4663 A, Mn II 4205 A,
Ni II 4067 A. [X/H]Element для вышеприведенных линий
не превышает 0.2 dex относительно солнечных значе-
ний. В звезде наблюдаются самые низкие по сравне-
нию с остальными нормальными звездами содержа-
ния элементов Na, Ca, Sc, Cr, Mn, Fe, Ni.

Элементы Zn, Sr, Y, Zr, Ba будут рассмотрены ниже.
Средняя металличность для элементов от He до Fe в
звезде составляет −0.07 ± 0.11.

В спектре 21 Lyn нейтральный кремний представ-
лен одной линией 6155 A. Учет не-ЛТР эффектов поз-

волил достичь ионизационного равновесия Si I/Si II:
различие в содержаниях составило 0.09 dex. Отно-
сительно Солнца кремний в небольшом дефиците:
−0.14 dex. В 21 Lyn наблюдается наибольший из всех
звезд дефицит углерода: −0.21 dex при отказе от ЛТР.
Средняя металличность для элементов от He до Fe в
звезде для модели атмосферы 9650g3.75: 0.02 ± 0.13.
Мы подтверждаем вывод Ройера и др. (2014), что звез-
да относится к нормальным А звездам.

Звезда HD 145788, которая имеет спорный статус в
литературе, показывает немного завышенное содер-
жание элементов железного пика и избыток Ca и Sc до
0.38 dex относительно Солнца. Кобальт представлен
одной линией Co II 4160 A с завышенным содержани-
ем относительно Солнца, на 0.43 dex. Фоссати и др.
(2009) предположили, что звезда образовалась в обла-
сти повышенной металличности.

Мы получили, что у HD 145788 средняя метал-
личность для элементов от He до Fe: 0.17 ± 0.13.
HD 145788 показывает небольшое превышение со-
держания относительно солнечного практически для
всех элементов группы железа. Мы предполагаем, что
HD 145788 находится на стадии превращения в Аm
звезду. Признаком Аm звезды принято считать дефи-
цит Ca и Sc (Конти, 1970). Но этот классификаци-
онный критерий был выработан в результате анализа
данных, полученных в предположении ЛТР. Не-ЛТР
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расчеты Машонкиной (2024) показали, что у А-звезд
не-ЛТР поправки для линий Sc II – положительные и
растут с ростом Teff, так что у Аm-звезд с Teff > 9300 K,
lоg g < 4 и Ca, и Sc имеют содержание выше солнечно-
го (Машонкина и Фадеев, 2024). Параметры атмосфе-
ры HD 145788 находятся именно в этом диапазоне.

В спектре κCep наблюдаются по одной линии у эле-
ментов Si I 3905 A, Ca I 4226 A, и Co II 4145 A. Содер-
жание химических элементов в κCep близко к солнеч-
ным значениям до Ni включительно, кроме завышен-
ного содержания Ca и Sc на 0.25 и 0.31 dex соответ-
ственно. Для остальных элементов значения относи-
тельно Солнца находятся в пределах ошибок опреде-
ления. Средняя металличность для элементов от He до
Fe в звезде составляет 0.09 ± 0.10.

В статьях Машонкиной и др. (2020) и Романов-
ской и др. (2023) было показано наличие зависимо-
сти содержания Zn, Sr, Y, Zr, Ba от эффективной
температуры в атмосферах нескольких нормальных
звезд: с увеличением Teff от 7200 до 10 000 К избыт-
ки содержания растут до 1.2 dex относительно сол-
нечных значений, а затем падают практически до ну-
ля при Teff = 13 000 К. В настоящей работе мы допол-
нили выборку звезд в отсутствующих диапазонах Teff
(8000–9000 К и 9500–12 000 К) и на основании деталь-
ного не-ЛТР анализа показали, что избытки тяжелых
элементов в исследуемых звездах соответствуют ожи-
даемым значениям для данных температур (рис. 5).
Впервые получена такая же зависимость содержаний
двух других элементов Co и Ni от эффективной тем-
пературы с максимумом избытка до 0.6 dex в области
9500–10 000 К (рис. 5 слева). В более холодных звез-
дах наблюдается дефицит кобальта и никеля, затем со-
держание относительно солнечного растет до макси-
мального значения 0.6 dex при 9500 К, и при дальней-
шем повышениии Teff до 10 500 К содержание элемен-
тов уменьшается.

Как было упомянуто во Введении, одним из основ-
ных процессов возникновения аномалий в атмосфе-
рах звезд Главной последовательности с малыми ско-
ростями вращения V < 120 км с−1 (Абт, 2000) явля-

ется атомная диффузия. Для детального расчета диф-
фузионных моделей звездной эволюции необходимо
иметь данные по монохроматическим поглощениям
для огромного количества линий элементов в различ-
ных стадиях ионизации, позволяющие рассчитывать
радиационное давление на различных глубинах. Со-
временные диффузионные модели звездной эволю-
ции основываются на расчетах монохроматических
поглощений только для 17 элементов, из которых са-
мыми тяжелыми являются Fe и Ni (Ситон, 2005). Рас-
считанное содержание Fe в моделях звезд различно-
го возраста и эффективной температуры согласуется
с наблюдаемым отсутствием каких-либо корреляций
содержания с эффективной температурой в нормаль-
ных звездах (Машонкина и Фадеев, 2024). Задачей на
будущее является проведение диффузионных расче-
тов для Ni – одного из первых тяжелых элементов,
содержание которого коррелирует с Teff в нормальных
звездах, и для которого есть расчеты монохроматиче-
ских поглощений. Для более тяжелых элементов (Zn,
Sr, Y, Zr, Ba), к сожалению, данных для диффузионных
расчетов недостаточно.

Звезды, наблюдаемые с полюса. Несмотря на
неопределенности моделирования атмосфер быст-
ровращающихся звезд 134 Tau и 7 Sex, мы провели
анализ их спектров. Полученный химический состав
с учетом не-ЛТР для звезд приведен на рис. 4б–4г.
Для 134 Tau получены содержания химических эле-
ментов, близкие к солнечным значениям в пределах
ошибок определения, за исключением He, Sc и
тяжелых элементов. Средняя металличность от He
до Fe: 0.05 ± 0.17, что указывает на принадлежность
звезды к нормальным А-звездам. Для 7 Sex, несмот-
ря на схожие значения Teff, полученные методами
SME и SED, получено нарушение ионизационного
равновесия (см. табл. 4). Средняя металличность
звезды 0.40 ± 0.22, что указывает на возможную
принадлежность к группе Am-звезд с усиленными
линиями металлов. Однако, как было указано в
разделе 2, использование модели атмосферы с учетом
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Рис. 5. Температурное поведение содержания Co, Ni и более тяжелых элементов в нормальных А-звездах.
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несферичности звезды может привести к изменению
картины химического состава в исследуемых звездах.

Стоит отметить, что для 134 Tau в статье Романов-
ской и др. (2023) приводились значения для Sr и Ba
с моделью атмосферы 10825g3.88, взятой из работы
Адельмана (1991). В настоящей статье мы не приво-
дим обновленные значения, полученные с двумя мо-
делями атмосфер, по причине, описанной выше.

4. ЗАКЛЮЧЕНИЕ

Мы увеличили выборку нормальных звезд с узкими
спектральными линиями и эффективными темпера-
турами в диапазоне 8000–10 700 К, для которых про-
веден самосогласованный анализ содержания хими-
ческих элементов от He до Nd.

Фундаментальные параметры атмосфер были опре-
делены по спектрам с помощью пакета SME и по
спектральному распределению энергии. Представле-
ны содержания для 25 элементов, для 18 из них содер-
жания были получены с учетом отклонений от ЛТР.
Для наиболее холодной звезды определено содержа-
ние Li, которое оказалось близким к метеоритному.
Показано, что применение не-ЛТР подхода уменьша-
ет неопределенность полученных содержаний, в част-
ности, для легких элементов.

С учетом результатов, представленных в статьях
Машонкиной и др. (2020), Романовской и др. (2023)
и полученных в настояще й работе для υ Aql, 21 Lyn и
κ Cep, мы можем сделать вывод, что признаком нор-
мальных А-звезд является согласие содержания эле-
ментов от Не до Fe с солнечными значениями. У этих
же звезд более тяжелые элементы могут иметь содер-
жание выше солнечного, что предположительно мо-
жет являться проявлением эффектов атомной диффу-
зии, и величина избытка коррелирует с Teff .

Уточнена классификация HD 145788, которая име-
ет спорный статус в литературе: мы полагаем, что этот

объект находится на начальной стадии превращения в
Am-звезду.

Профили спектральных линий у 7 Sex и 134 Tau
свидетельствуют о том, что это быстровращающиеся
звезды, наблюдаемые с полюса. Анализ их спектров
требует специальных методов.

Подтверждено наличие корреляции избытков эле-
ментов Zn, Sr, Y, Zr, Ba в атмосферах нормальных А-
звезд с эффективной температурой, и впервые полу-
чена такая же зависимость для Co и Ni с максимумом
избытка 0.6 dex в области 9500–10 000 К.
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