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В данных телескопа ART-XC им. М.Н. Павлинского обсерватории СРГ были обнаружены пульсации с пе-
риодом ≈106 с от малоизученной массивной рентгеновской двойной системы RX J0535.0-6700, расположен-
ной в Большом Магеллановом Облаке (БМО), что доказывает, что компактным объектом в системе является
замагниченная нейтронная звезда. Пульсации с близкими периодами были обнаружены также в архивных
наблюдениях телескопов XMM-Newton и Chandra. По фотометрическим наблюдениям обсерватории WISE
показано, что RX J0535.0-6700 демонстрирует значительную переменность в ИК-диапазоне, которая может
быть связана с секулярными изменениями размера декреционного диска. Открытие рентгеновских пульса-
ций делает RX J0535.0-6700 еще одним членом популяции рентгеновских пульсаров с Be-звездами в БМО.

Ключевые слова: RX J0535.0-6700, массивные рентгеновские двойные системы, нейтронные звезды.

DOI: 10.31857/S0320010825010019, EDN: LETZKV

ВВЕДЕНИЕ

Большое Магелланово Облако (БМО) – карлико-
вая галактика-спутник Млечного пути. Из-за мощных
вспышек звездообразования в недалеком прошлом
(≈107 лет назад, см., например, Штыковский и Гиль-
фанов, 2005; Антониу и Зезас, 2016) в данный момент
БМО населено большой популяцией ярких массив-
ных рентгеновских двойных систем (high-mass X-ray
binaries, HMXB). Благодаря небольшому расстоянию
до БМО (49.6 кпк, Петржинский и др., 2019) и незна-
чительному поглощению на луче зрения (Стейвели-
Смит и др., 2003), эту популяцию оказывается удобно
изучать современными рентгеновскими телескопами.

Однако большую долю – зачастую более 90% вре-
мени (Сидоли и Паизис, 2018; Киннеа и др., 2018) –
подобные системы проводят в “низком” состоянии,
с рентгеновской светимостью LX ≲ 1034 эрг с−1, что
делает затруднительным их детальное исследование
даже для самых чувствительных современных рентге-
новских телескопов в наблюдениях разумной (десят-
ки кс) продолжительности. Таким образом, для реше-
ния наблюдательных задач, таких как, например, из-
мерение периодов вращения нейтронных звезд (НЗ)
в HMXB, необходимы множественные наблюдения,
которые могут застать новые или уже известные ис-
точники во вспышке.

Рентгеновский источник RX J0535.0-6700 был об-
наружен обсерваторией ROSAT (Трюмпер, 1982) во
время обзора БМО, составленного из более чем
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200 наблюдений, которые проводились с 1990 по
1994 г. (Хаберл и Питш, 1999). Светимость источника
на момент детектирования составила ∼ 3 × 1035 эрг/с.
Хаберл и Питш (1999) предположили, что оптиче-
ским компаньоном RX J0535.0-6700 является яркая
голубая звезда GRV 0535-6702, которая ранее была
классифицирована как мирида (Рейд и др., 1988) на
основании характерной переменности блеска с пе-
риодом в 241 день. Позднее Негуэрела и Ко (2002)
получили оптический спектр этой звезды и класси-
фицировали ее как B0Ve, таким образом показав,
что RX J0535.0-6700 принадлежит к классу массивных
рентгеновских двойных с Be-компаньонами (BeXRB,
Рикельме и др. 2012). В таких системах основным ис-
точником вещества, аккрецируемого на НЗ, являет-
ся декреционный диск массивной Be-звезды (Бель-
чжинский и Циолковский, 2009). В зависимости от
параметров двойной системы аккреция на НЗ может
быть как квазипостоянной (Пфай и др., 2002), так и
сильно переменной, с мощными вспышками, проис-
ходящими раз в орбитальный период или реже (Ока-
заки и Негуруэла, 2001).

По данным оптической спектроскопии, получен-
ной на телескопе NTT, Рикельме и др. (2012) измери-
ли полную эквивалентную ширину линии Hα от де-
креционного диска EWHα = −7.9 A. Если орбиталь-
ный период системы действительно составляет Porb =

= 241 день, то из зависимости Porb − EW(Hα) (Рейг,
2011) можно предположить, что декреционный диск
на момент наблюдений в 2004 г. не достигал своего
максимального возможного размера.
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В 2024 г. RX J0535.0-6700 попал в поле зрения те-
лескопа ART-XC им. М.Н. Павлинского (Павлинский
и др., 2021) обсерватории СРГ (Сюняев и др., 2021)
во время длительных наблюдений 1A 0538-66 – уни-
кального рентгеновского пульсара в БМО. Получен-
ные данные позволили нам обнаружить когерентные
пульсации рентгеновского излучения от RX J0535.0-
6700 с периодом в ≃106 с, который мы отождестви-
ли с периодом вращения замагниченной НЗ, подтвер-
див таким образом, что RX J0535.0-6700 – типич-
ная BeXRB. Мы также исследовали архивные дан-
ные рентгеновских обсерваторий Chandra и XMM-
Newton, чтобы проследить за эволюцией периода вра-
щения НЗ и светимости системы на больших времен-
ных масштабах.

ОТБОР И ОБРАБОТКА ДАННЫХ

Источник RX J0535.0-6700 попал в поле зрения
ART-XC во время мониторинговых наблюдений рент-
геновского пульсара 1A0538-66 летом 2024 г. Всего бы-
ло выполнено три длительных наблюдения: одно в на-
чале июня и два в июле (см. табл. 1). Во всех трех на-
блюдениях источник надежно детектируется в диапа-
зоне 4–12 кэВ, со значимостью >10σ.

Данные телескопа ART-XC были обработаны с ис-
пользованием стандартного программного обеспече-
ния artproducts v0.9 с версией калибровочной базы
данных CALDB 20230228. Для временного анализа
времена регистрации фотонов были приведены к ба-
рицентру Солнечной системы, после чего для каждо-
го наблюдения из круговой апертуры с радиусом 1′,
центрированной на источнике, были извлечены спис-
ки событий и кривые блеска. Спектры извлекались
из апертуры меньшего размера, R = 45′′, спектр фо-
на был набран в наблюдениях пустых полей, выпол-
ненных ранее и нормирован на темп счета на энер-
гиях выше 60 кэВ, где эффективная площадь зеркаль-

Таблица 1. Список рентгеновских наблюдений
RX J0535.0-6700

ObsID Время начала Экспозиция,

наблюдений, MJD кс

ART-XC

124101290010 60464.86 173

124101290020 60498.12 260

124101290030 60508.20 86

XMM- Newton

0071740501 52373.84 24

Chandra

27078 59948.23 25

27077 60147.66 28

26555 60201.30 31

28907 60536.70 18

ной системы становится принебрежимо малой. Такой
подход позволяет получать спектры фона с лучшей
статистикой и уменьшает эффекты, связанные с неод-
нородным откликом отдельных пикселей детектора.
Для спектрального и временного анализа данные всех
семи модулей телескопа ART-XC объединялись.

Чтобы составить лучшее представление о перемен-
ности источника на больших временных масштабах
мы проверили архивы других рентгеновских теле-
скопов. В 2002 г. источник наблюдался обсервато-
рией XMM-Newton (Йенсен и др., 2001). К сожале-
нию, из-за выбранного режима работы детекторов,
источник попал в поле зрение только камер MOS1
и MOS2, временное разрешение которых ограниче-
но временем считывания кадра и равно 2.6 с. По-
сле стандартной переобработки данных с использова-
нием XMMSAS v20, мы извлекли списки событий и
спектры в круговых апертурах R = 22.5′′ (R = 20′′) для
MOS1 (MOS2), фоновые спектры были набраны в пу-
стых участках поля, на тех же чипах камер.

Также в 2023–2024 гг. проводился глубокий обзор
нескольких выбранных площадок в БМО с помощью
телескопа Chandra (Вайскопф и др., 2000), в одну из
таких площадок попал и RX J0535.0-6700. Мы выбра-
ли соответствующие наблюдения (см. табл. 1), пере-
обработали данные с помощью CIAO 4.17 (Фрушионе
и др., 2006) и извлекли изображения поля в стандарт-
ном широком диапазоне 0.5–7 кэВ. Как оказалось,
источник детектировался во всех наблюдениях, при
этом наиболее ярким он был в последнем из них, вы-
полненном в 2024 г., примерно через месяц после по-
следнего наблюдения ART-XC. Всего в этом наблюде-
нии было накоплено около 1600 фотонов, что доста-
точно для более детального спектрального и времен-
ного анализа. Из каждого наблюдения Chandra был
извлечен спектр из круговой апертуры радиусом 6′′,
центрированной на источнике, фоновые спектры бы-
ли набраны в областях, расположенных на том же чи-
пе матрицы и свободных от источников. Из послед-
него наблюдения также была извлечена кривая блес-
ка из той же круговой апертуры. Как и для XMM-
Newton, временное разрешение Chandra ограничено
временем накопления кадра, которое в этом наблю-
дении составляло 3.1с.

Аппроксимация спектров проводилась с помощью
пакета XSPEC v12.12.1 (Арно и др., 1999). Из-за
небольшой фотонной статистики все спектры пере-
бинировались так, чтобы в канал попадали не менее
пяти отсчетов и аппроксимировались с использова-
нием W-статистики (Вахтер и др., 1979). Ошибки на
параметры оценивались из длинных марковских це-
почек. Качество аппроксимации оценивалось с помо-
щью статистики Крамера – фон Мизеса: для каждого
спектра разыгрывалось 1000 спектров, полученных из
модели наилучшей аппроксимации, и далее оценива-
лось, в какой доле симулированных спектров прове-
рочная статистика меньше (т.е. лучше), чем у наблю-
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даемого спектра. В случае, если наблюдаемый спектр
действительно производится выбранной моделью, эта
доля должна быть около 50%. Для всех спектральных
моделей эта доля оказалась менее 60%, что говорит о
том, что модели удовлетворительно описывают дан-
ные.

ВРЕМЕННОЙ АНАЛИЗ

Поиск пульсаций

После детектирования и отождествления источни-
ка с системой-кандидатом в BeXRB стало ясно, что
данные ART-XC могут быть полезны для измерения
периода вращения НЗ в системе. По отобранным
спискам событий в диапазоне энергий 4–10 кэВ мы
построили периодограммы в терминах H-статистики
(Харт, 1985) на гармоническом разложении вплоть до
двадцати гармоник (Буччери и др., 1983). Периодо-
грамма для первого наблюдения ART-XC, построен-
ная на логарифмической решетке из 4 × 104 перио-
дов от 10 до 1000 с, приведена на рис. 1, горизон-
тальной линией отмечена граница H = 23, соответ-
ствующая значимости регистрации сигнала на уровне
>0.9999. На периодограмме хорошо виден пик на пе-
риоде Ps ≈ 106 с, который мы отождествили с перио-
дом вращения НЗ, и вторичные пики на кратных пе-
риодах (P = 0.5Ps, 1.5Ps, 2Ps, 2.5Ps, 3Ps и т.д.).

Аналогичным образом мы построили периодограм-
мы для данных XMM-Newton и Chandra, случайным
образом разыгрывая время прихода каждого фотона
внутри кадра (2.6 с и 3.1 с соответственно). Из этих пе-
риодограмм (см. нижнюю панель рис. 1) хорошо вид-
но, что пульсации с тем же периодом ≈106 с присут-
ствуют и в этих данных. Пульсации также присутству-
ют во втором наблюдении ART-XC, которое состоя-
лось примерно через месяц после первого, в третьем
наблюдении ART-XC пульсации на этом уровне зна-
чимости не детектируются.

Несмотря на то что периодограммы позволяют на-
дежно обнаруживать присутствие когерентных сигна-
лов в данных, для исследования свойств этих сигна-
лов, например, точного измерения периода или опре-
деления профиля импульса, удобнее воспользоваться
другими методами.

Измерение периода, получение профиля импульса

Чтобы аккуратно измерить период пульсаций, мы
использовали кривую блеска источника в диапазоне
4–10 кэВ с разрешением в 1 с. Наилучший период был
определен методом сложения эпох (Лихи и др., 1983).
Полученный профиль импульса во втором наблюде-
нии ART-XC показан на рис. 2, верхняя панель. Вви-
ду низкой фотонной статистики (наблюдаемый темп
счета ART-XC составлял примерно 400 фотонов в сут-
ки) для определения погрешности на значение перио-
да мы использовали методику, подобную предложен-
ной в работе Мереминский и др. (2022). Предполагая,

что темп счета фона и средний за период темп сче-
та источника в течение всего наблюдения были по-
стоянными, и используя представление профиля им-
пульса кусочно-постоянной функцией, мы разыграли
1000 кривых блеска с таким же временным разреше-
нием и интервалами наблюдения, как и у оригиналь-
ной кривой блеска. Далее для каждой кривой блеска с
помощью метода сложения эпох был определен пери-
од. Границы доверительного интервала были опреде-
лены как 16% и 84% квантили выборки полученных
периодов. Применив этот метод к данным ART-XC,
мы определили, что в первом наблюдении период со-
ставил P = 106.180+0.003

−0.005 с (68% интервал), а во вто-
ром – P = 106.160 ± 0.004 с.

Для наблюдений Chandra и XMM-Newton необхо-
димо дополнительно учесть продолжительность на-
копления единичного кадра (3.1 с и 2.6 с соответствен-
но). Для каждого списка событий мы провели 1000
случайных реализаций, приписывая каждому фото-
ну случайное время детектирования внутри кадра. Да-
лее для каждой реализации был определен наилуч-
ший период. Из полученной выборки периодов был
взят медианный период и соответствующие кванти-
ли, измеренный таким образом период в наблюдении
XMM-Newton в 2002 г. составил P = 106.26+0.02

−0.02, а в по-
следнем наблюдении Chandra в 2024 г. P = 106.12 ±
± 0.01 с. Соответствующие профили импульса приве-
дены на рис. 2 (средняя и нижняя панели).

Следует отметить, что доля пульсирующего излуче-
ния, измеренная во всех эпохах, достаточно велика и
составляет ≈60% для ART-XC и XMM-Newton. В уз-
ких энергетических диапазонах (0.5–2 и 2–10 кэВ) в
наблюдении Chandra доля пульсирующего излучения
оказалась еще выше – ≈70%.

СПЕКТРАЛЬНЫЙ АНАЛИЗ

Чтобы определить светимость, которую имел ис-
точник в наших наблюдениях, мы исследовали его
рентгеновские спектры.

Учитывая небольшую фотонную статистику, для ап-
проксимации спектров мы выбрали простую фено-
менологическую модель из трех компонент, где пер-
вая компонента отвечает за межзвездное поглоще-
ние на веществе нашей Галактики, вторая – за ло-
кальное поглощение в источнике, а третья соответ-
ствует континууму, описываемому степенным зако-
ном с экспоненциальным завалом на высоких энерги-
ях – tbabs*tbfeo*cutoffpl в терминах XSPEC. Тол-
ща нейтрального водорода в нашей Галактике в на-
правлении на источник была взята равной 1021 см−2

(Коллаборация HI4PI, 2016). Поскольку металлич-
ность в БМО существенно отличается от солнечной,
при моделировании локального поглощения, следуя
работе Дуччи и др. (2019), мы приняли обилия для
кислорода и железа равными 0.33 и 0.38 соответствен-
но.
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Рис. 1. Сверху: периодограмма первого наблюдения ART-XC в 2024 г. (4–10 кэВ). Красной штриховой линией указан пе-
риод вращения НЗ, пунктирными линиями – субгармоника и гармоники. Снизу: участок периодограммы вблизи периода
пульсаций, построенный для второго наблюдения ART-XC (4–10 кэВ, черным), наблюдения XMM-Newton (0.2–10 кэВ,
красным) и наблюдения Chandra (0.5–10 кэВ, синим).
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Несмотря на простоту принятой спектральной мо-
дели, надежно определить ее параметры по узкопо-
лосным спектрам достаточно сложно из-за сильно-
го вырождения параметров. Поэтому мы решили од-
новременно использовать данные Chandra и первых
двух наблюдений ART-XC, набранные в 2024 г. Спек-
тры этих двух наблюдений ART-XC похожи по форме,
а темп счета в диапазоне 4–12 кэВ отличается менее,
чем на 10%. Поток в наблюдении Chandra был при-
мерно в 5 раз выше, для учета этой разности при фити-
ровании вводилась мультипликативная постоянная.
Полученный широкополосный спектр (0.8–16 кэВ)
приведен на рис. 3 черными (ART-XC) и красными
(Chandra) крестами. Расширенный энергетический
диапазон позволил нам измерить величину локаль-
ного поглощения NH, loc = 2.8+7.5

−2.1 × 1021 см−2 (здесь
и далее ошибки на спектральные параметры приве-
дены на уровне 90% доверительного интервала), на-
клон степенного закона Γ = 0.23+0.52

−0.17 и энергию завала
Ecut = 6.0+7.2

−1.2 кэВ.
По полученным параметрам были оценены боло-

метрические светимости в диапазоне 0.1–30 кэВ для
всех наблюдений ART-XC и Chandra за 2023–2024 гг.
Как показано на рис. 4, за два года светимость
RX J0535.0-6700 возросла от 4 × 1034 эрг с−1 до
2 × 1036 эрг с−1, однако этот рост не был строго моно-
тонным и сопровождался переменностью на масшта-
бах недель.

Интересно отметить, что спектр, полученный
XMM-Newton в 2002 г., можно описать подобной
моделью с зафиксированным локальным поглоще-
нием (NH, loc = 2.8 × 1021 см−2), но в таком случае
получаются нефизичные параметры континуума –
очень жесткий степенной наклон Γ ≲ −1.5 и низкая
энергия завала – около 3 кэВ. Можно описать спектр
и моделью чернотельного излучения с температурой
kT ≈ 2 кэВ и характерным размером излучающей
области R ≈ 500 м, при этом светимость источника
оказывается около 3 × 1035 эрг с−1. Подобные горячие
области наблюдаются в спектрах аккрецирующих
рентгеновских пульсаров с массивными компаньо-
нами, но при существенно больших светимостях,
обычно выше 1037 эрг с−1 (Муштуков и Цыганков,
2022). Однако, позволив локальному поглощению
варьироваться, спектр удается описать исходной
моделью со степенным законом, при этом фотон-
ный индекс оказывается достаточно типичным
Γ = 0.49+0.47

−0.25, а толща локального вещества большой
NH, loc = 23.5+17.0

−7.1 × 1021 см−2, энергию завала в спек-
тре значимо измерить не удается. Аппроксимация
спектров MOS1/MOS2 этой моделью показана на
рис. 3 темно-синей пунктирной линией. Для такого
жесткого спектра невозможно получить надежную
оценку болометрической светимости. Однако, зная
светимость в мягком рентгеновском диапазоне
L0.1−10 keV ≈ 4 × 1035 эрг с−1 и предполагая, что ти-
пичная болометрическая поправка невелика (так,

для широкополосного спектра ART-XC/Chandra эта
поправка была равна L0.1−30 keV/L0.1−10 keV ≈ 1.7), можно
предположить, что болометрическая светимость
RX J0535.0-6700 в 2002 г. была на уровне ≈1036 эрг с−1.

RX J0535.0-6700 также попадал в поле зрения те-
лескопа XMM-Newton несколько раз в течение мая-
июня 2018 г., однако не был детектирован. Мы по-
лучили 2σ верхние пределы на его поток с помо-
щью специализированного сервиса (XMM-Newton
Science Archive upper limit server, Руиз и др., 2022),
характерное значение верхнего предела составило
≈ 3 × 10−14 эрг см−2 с−1 в диапазоне 0.2–12 кэВ, что со-
ответствует светимости в ≈1034 эрг с−1 в предположе-
нии, что форма спектра была такой же, как в 2024 г.

ОБСУЖДЕНИЕ

Долговременная переменность рентгеновской све-
тимости в Be-системах, подобная наблюдающейся в
RX J0535.0-6700, может быть связана с секулярной
эволюцией декреционного диска (Вишневский и др.,
2010). Мы использовали публично доступные данные
космического ИК-телескопа WISE (Райт и др., 2010;
Майнцер и др., 2014), чтобы проверить наличие ха-
рактерной переменности “ярче-краснее”, связанной
с изменением размера декреционного диска. Кривая
блеска в фильтрах W1 и W2 приведена на рис. 4. К со-
жалению, количество данных в фильтре W2 недоста-
точно для каких-то конкретных заключений о состоя-
нии декреционного диска в 2023–2024 гг., однако вид-
но, что с 2010 г. блеск в W2 вырос от 14.5 до 13 зв. ве-
личины, при этом блеск в W1 вырос на 1 величину.
Кроме того, после 2019 г. наблюдается изменение ха-
рактера переменности на масштабах месяцев. Все это
может указывать на процессы, происходящие в декре-
ционном диске, дальнейшие спектроскопические на-
блюдения необходимы, чтобы подтвердить эти подо-
зрения.

Следует отметить, что на диаграмме Корбета (Кор-
бет, 1986) Porb − Ps RX J0535.0-6700 попадает в ос-
новное сгущение Be-систем (см. обновленные версии
диаграммы Гребенев, 2010; Кречмар и др., 2019), если
предположить, что наблюдавшийся период в 241 день
(Рейд и др., 1988) действительно является орбиталь-
ным.

Стабильность наблюдаемого периода враще-
ния НЗ за последние более чем двадцать лет
позволяет предположить, что он близок к рав-
новесному значению. Предполагая, что средний
темп аккреции в RX J0535.0-6700 составляет
⟨Ṁ⟩ ≈ 2 × 10−11 M⊙ год−1, что соответствует сред-
ней светимости ⟨LX⟩ ≈ 1035 эрг с−1, можно получить
грубую оценку на напряженность магнитного поля
НЗ по формуле (9) из работы Бильдстен и др. (1997):
B ≈ 5×1012 Гс. Такой напряженности магнитного поля
недостаточно для того, чтобы в системе наблюдался
эффект “пропеллера” (Илларионов и Сюняев, 1975),
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даже на низких светимостях может продолжаться
аккреция из холодного диска (Цыганков и др., 2017).
Таким образом можно объяснить и длительное состо-
яние с низкой светимостью (LX ≈ 3 × 1035 эрг с−1),
наблюдавшееся ART-XC и не характерное для типич-
ной переменности BeXRB.

ЗАКЛЮЧЕНИЕ

Нами были обнаружены когерентные пульсации
рентгеновского потока с периодом в 106.2 с от
RX J0535.0-6700 – BeXRB, расположенной в БМО,
что позволило измерить частоту вращения нейтрон-
ной звезды в этой системе. Пульсации были обна-
ружены в данных ART-XC, а также в архивных на-
блюдениях обсерваторий XMM-Newton и Chandra,
выполненных в различные эпохи, при этом период
за время наблюдений (>20 лет) сильно не изменил-
ся. Доля пульсирующего излучения оказалась боль-
шой (выше 50%) во всех наблюдениях.

Рентгеновский спектр источника характерен для
аккрецирующих пульсаров в массивных рентгенов-
ских двойных системах и может быть описан моделью
степенного закона с экспоненциальным завалом и по-
глощением. Величина локального поглощения силь-
но изменилась между 2002 и 2024 гг., однако необхо-
димо отметить, что точное измерение NH, loc по отдель-
ным спектрам, набранным только в мягком рентге-
новском диапазоне (0.5–10 кэВ), затруднено; для на-
дежного измерения параметров спектра необходимы
широкополосные наблюдения.

У B0Ve звезды – оптического компаньона
RX J0535.0-6700 – была обнаружена сильная пере-
менность в ИК-диапазоне, которая может указывать
на эволюцию декреционного диска.

Таким образом, все полученные нами данные под-
тверждают, что RX J0535.0-6700 – 28-й известный ак-
крецирующий рентгеновский пульсар в Большом Ма-
геллановом Облаке (Хаберл и др., 2023)

В работе использованы данные телескопа ART-
XC им. М.Н. Павлинского обсерватории Спектр–
Рентген–Гамма (СРГ). Обсерватория СРГ разработа-
на в АО “НПО Лавочкина” (входит в госкорпора-
цию “Роскосмос”) при участии Германского центра
авиации и космонавтики (DLR) в рамках Федераль-
ной космической программы России по заказу Рос-
сийской академии наук. Команда ART-XC благодарит
госкорпорацию “Роскосмос”, Российскую академию
наук и госкорпорацию “Росатом” за поддержку про-
екта СРГ, а также АО “НПО Лавочкина” и партнеров
за создание и работу с космическим аппаратом и плат-
формой “Навигатор”.

В работе использованы данные полученные из
Архива данных Chandra, который поддерживается
Chandra X-ray Center (CXC). Работа частично осно-
вана на данных, полученных XMM-Newton, научной

миссией ESA, созданной при прямом финансирова-
нии государств-членов ESA и NASA.

Работа выполнена при поддержке гранта Минобр-
науки РФ № 075-15-2024-647.
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