PISN 2018ibb: РАДИОАКТИВНОЕ СВЕЧЕНИЕ В ЛИНИЯХ [О III]

© 2024 г. Н. Н. Чугай^{1*}

¹Институт астрономии РАН, Москва, Россия

Поступила в редакцию 20.11.2024 г. После доработки 12.12.2024 г.; принята к публикации 12.12.2024 г.

Сверхновая SN 2018 ibb категории PISN (pair-instability supernovae), связанной с динамической неустойчивостью кислородного ядра сверхмассивной звезды из-за рождения пар, показывает на небулярной стадии интенсивные эмиссионные линии [О III] неясного происхождения. Предлагается простая модель, которая демонстрирует возможность излучения линий [О III] требуемой интенсивности в кислородном веществе оболочки данной сверхновой, ионизуемой и нагреваемой радиоактивным распадом ⁵⁶Co. Указана причина, по которой среди сверхновых категории PISN светимость линий [О III] может меняться в широких пределах.

Ключевые слова: звезды — сверхновые; звезды — сверхмассивные звезды; звезды — нуклеосинтез.

DOI: 10.31857/S0320010824110033, EDN: LSZCWE

ВВЕДЕНИЕ

Сверхновая сверхвысокой светимости (SLSN) SN 2018ibb (Шульце и др., 2024) — наиболее убедительный пример сверхновых, обусловленных неустойчивостью из-за рождения пар, так называемых pair-instability supernovae (PISN) (Вусли и др., 2002; Баркат и др., 1967). Кривая блеска на интервале времени около 1000 дней указывает, что SN 2018ibb порождена взрывом сверхмассивной звезды с большой энергией, $\gtrsim 10^{52}$ эрг, и выбросом огромной массы (25—44 M_{\odot}) синтезированного ⁵⁶Ni (Шульце и др., 2024). Большие величины энергии и массы 56 Ni означают, что предсверхновая имела начальную массу в интервале $140-260\,M_\odot$ и взрыв был однократным, без предварительных пульсаций из-за образования пар (Вусли и др., 2002). В такой картине SN 2018ibb нет места для массивной околозвездной оболочки, образованной мощной пульсацией перед взрывом, и, следовательно, нет оснований ожидать мощных эффектов ударного взаимодействия сверхновой с околозвездным веществом.

Противоположный случай — SLSN 2006gy с массивной ($\sim 5 \, M_{\odot}$) околозведной оболочкой, которая указывает на принадлежность SN 2006gy к категории "pulsational pair-instability SNe" (PPISNe) (Вусли и др., 2007).

В этом контексте обращает на себя внимание присутствие в спектрах SN 2018ibb на стадии 300-740 дней после взрыва интенсивных эмиссионных линий [О III] 5007, 4959 Å и 4363 Å со светимостью $\sim 10^{41}$ эрг с⁻¹ около 400-го дня после взрыва (Шульце и др., 2024). Из известных SLSNe эмиссия [О III] 5007, 4959 Å наблюдалась, помимо SN 2018ibb, только в LSQ14an и PS1-14bj (Луннан и др., 2016). Предпола-

гается, что эмиссионные линии [О III] в SN 2018ibb могут порождаться ударным взаимодействием оболочки сверхновой с плотным околозвездным газом (Шульце и др., 2024). Эта гипотеза, однако, вызывает сомнение, поскольку она не вполне согласуется с профилем дублета [О III] (Чугай, 2024). Альтернативный радиоактивный механизм излучения линий [О III] также сталкивается с проблемой, поскольку синтетический спектр SN 2018ibb, рассчитанный на основе модели взрыва гелиевого ядра He130 (Хегер, Вусли, 2002), не показывает заметной эмиссии [О III] 5007 Å (Шульце и др., 2024; Козырева и др., 2024).

Учитывая неопределенность относительно происхождения линий [О ііі], было бы преждевременно отказываться от радиоактивного механизма, поскольку может оказаться, что реальная оболочка SN 2018ibb значительно отличается от теоретической модели, основанной на одномерном взрыве гелиевого ядра He130. Во-первых, в случае SN 2018ibb имел место взрыв голого кислородного ядра, лишенного гелиевой оболочки (Чугай, 2024); во-вторых, в одномерной гидродинамической модели отсутствует макроскопическое перемешивание ⁵⁶Ni и несгоревшего кислорода, тогда как реальный взрыв может порождать трехмерное распределение вещества с фрагментами радиоактивного никеля, внедренными в несгоревшее вещество внешних слоев; в-третьих, никелевый пузырь, обусловленный распадом огромной массы ⁵⁶Ni, дополнительно модифицирует распределение вещества в разлетающейся оболочке (Козырева и др., 2017).

По этой причине важно исследовать возможности радиоактивного механизма свечения SN 2018ibb в линиях [О III] на основе гибкой простой модели, которая бы отражала основную физику депозиции радиоактивной энергии, включая ионизацию и возбуждение

 $^{^*}$ Электронный адрес: nchugai@inasan.ru

кислорода. Подобное исследование является целью данного сообщения, которое включает описание модели оболочки сверхновой и метод расчета ионизации кислорода (раздел 2), расчет интенсивностей линий кислорода и определение основных параметров излучающего кислородного вещества (раздел 3). В разделе 4 обсуждаются результаты и предлагается объяснение значительной вариации интенсивности линий [О III] среди сверхновых категории PISN.

ИОНИЗАЦИЯ КИСЛОРОДА

Рассматривается простейшая модель, в которой сверхновая представлена однородной (в среднем) сферой с кинематикой свободного разлета v = r/t. По сути, модель является однозонной, в которой средняя плотность однородной модели определяется массой и кинетической энергией сверхновой. За основу взята модель SN 2018ibb с массой разлетающейся оболочки $M = 60 \, M_{\odot}$, кинетической энергией $E = 1.2 \times 10^{52}$ эрг и массой 56 Ni $M_{ni} = 30 \, M_{\odot}$ (модель mod60, Чугай, 2024). Подчеркнем, что и эта модель приближенная, поскольку использует упрощенное описание кривой блеска, предложенное Арнеттом (1980). Основные параметры модели качественно соответствуют картине, в которой взрывное горение $30\,M_\odot$ кислорода при калорийности $q(^{16}O) = 5 \times 10^{17}$ эрг г⁻¹ (Вусли и др., 2002) выделяет энергию 3×10^{52} эрг. За вычетом кинетической энергии остальная энергия, 1.8×10^{52} эрг, расходуется на преодоление энергии связи, которая в момент максимального сжатия до взрыва значительно превышает энергию связи кислородного ядра массой $60 \, M_{\odot}$ перед потерей устойчивости.

При указанных массе и кинетической энергии сверхновой скорость на внешней границе однородной сферы составляет $v_0 = (10E/3M)^{1/2} = 5770 \,\mathrm{km} \,\mathrm{c}^{-1}$, средняя плотность $\rho = 3.6 \times 10^{-15} (t/400 \text{д})^{-3} \text{ г см}^{-3} \text{ со}$ средней концентрацией кислорода в кислородном веществе $n = 1.3 \times 10^8 (t/400 \text{д})^{-3} \text{ см}^{-3}$. Рассматриваются три варианта массы кислорода $M_O = 15 \, M_\odot$, $10 \, M_\odot$ и $5\,M_{\odot}$. Предполагается, что кислород перемешан с $^{56}{
m Ni}$ и, возможно, с другими компонентами, исключительно макроскопически, так что любой объем кислоролного вещества состоит только из кислорода. Это означает, что относительное расстояние $\delta = \Delta v/v_0$ между фрагментами $^{56}{
m Ni}$ и кислородом должно позволять гамма-квантам распада ⁵⁶Со на рассматриваемой стадии $t \approx 400$ дней проникать в кислород без заметного ослабления. Иными словами, должно выполняться ограничение на величину оптической толщины $\Delta \tau_{\gamma} =$ = $\delta k_{\gamma} \rho v_0 t \approx 2.2 \delta < 1$ при коэффициенте поглощения гамма-квантов $k_{\gamma} = 0.03 \, \text{cm}^2 \, \hat{r}^{-1}$ (Сазерлэнд и Уилер 1984). Требование $\delta < 0.5$ легко выполняется даже при умеренном макроскопическом перемешивании.

Приближение однородной плотности — идеализация. Распределение вещества может быть существенно трехмерным из-за эффектов взрыва, а таже форми-

рования никелевого пузыря, так что плотность кислородного вещества (ρ_O) может отличаться от средней плотности (ρ) однородной модели, $\rho_O = \chi \rho$, где χ — контраст плотности. С учетом массы кислорода $M_O < M$, доля объема, занимаемая кислородом, равна $f = V_O/V = (M_O/M)\chi^{-1}$. Заметим, что при $\chi = 1$ фактор заполнения кислорода $f = M_O/M < 1$: это поясняет смысл использования параметра χ вместо фактора заполнения f.

На момент $t=t_{\rm max}+276=381$ день после взрыва (+276 дней означает 276 дней после момента максимума ($t_{\rm max}$) болометрической светимости (Шульце и др., 2024), а t=381 дней означает время после взрыва) болометрическая светимость сверхновой составляет $L=1.2\times10^{43}$ эрг с $^{-1}$ (Шульце и др., 2024), которая воспроизводится в модели mod60 (Чугай, 2024). Мощность, вкладываемая в кислородное вещество гаммаквантами распада 56 Со, равна L_d (O) = $(M_O/M)L$. Следовательно, депозиция в единице объема кислородного вещества составляет $\epsilon_d=L_d$ (O)/ $V_O=(L/V)\chi=3.6\times10^{-7}\chi$ эрг см $^{-3}$ с $^{-1}$.

Темп ионизации k-иона (G_k) с потенциалом ионизации I_k в процессе ионизационных потерь комптоновских электронов равен $y_k \epsilon_d/w_k$, где y_k — доля k-ионов, а w_k — средняя величина работы, затрачиваемой на образование одной ионной пары при ионизации к-иона. Согласно экспериментам, для нейтрального кислорода $w_1 = 2.3I_1$, где I_1 — потенциал ионизации нейтрального кислорода (Ален, 1980); соотношение $w_k = 2.3I_k$ используется ниже для ионов первых трех стадий ионизации, поскольку при иониации электронами с энергией $\mathcal{E} \gg I_k$ преобладает отрыв внешнего электрона. Скорость радиативной рекомбинации равна $R_k = \alpha_k n_e y_{k+1} n$, где n_e — электронная концентрация, вычисляемая последовательно в процессе решения уравнений ионизационного баланса, n — концентрация кислорода, α_k — коэффициент рекомбинации k-иона кислорода, величина которого вычисляется согласно Тартер (1971).

В рассматриваемых условиях ионизация кислорода происходит в стационарном режиме. Действительно, при минимальной степени ионизации кислорода на 400-й день $x_e = n_e/n = 0.1$ (на самом деле $x_e \gtrsim 0.5$) электронная концентрация $n_e \sim 10^7 \, \mathrm{cm}^{-3}$ и, следовательно, наибольшее время рекомбинации, $1/(\alpha_1 n_e) \sim$ $\sim 4 \times 10^5$ c, намного меньше времени жизни 56 Co $(\sim 10^7 \text{ c})$ и времени расширения оболочки. В стационарном случае уравнения ионизационного баланса имеют вид $G_k = R_k$. Система уравнений ионизационного баланса включает четыре стадии ионизации кислорода. Ради иллюстрации приведем пример ионизации кислорода на 400-й день для модели с массой кислорода $15\,M_{\odot}$ при характерных значениях параметров $T_e = 9000 \,\mathrm{K}$ и $\chi = 3$. В этом случае доли ионов равны $(y_1, y_2, y_3, y_4) = (0.439, 0.52, 0.0397, 0.0013),$ а степень ионизации составляет $x_e = 0.602$.

Заметим, что мы не учитываем дополнитель-

ную ионизацию От излучением резонансных линий мультиплета uv1 От (834 Å) при возбуждении иона От быстрыми электронами. Вследствие этого представленная модель, возможно, недооценивает степень ионизации кислорода.

ИНТЕНСИВНОСТЬ ЛИНИЙ КИСЛОРОДА

Полученные путем решения ионизационного баланса доли ионов и концентрация электронов для данных значений T_e и контраста плотности χ используются при расчете светимости кислорода в линиях [О і], [О іі] и [О ііі]. Населенности уровней вычисляются в трехуровенном приближении (уровни соответствует термам). Вероятности спонтанных переходов взяты из базы данных NIST, силы столкновений в основном из данных, представленных в монографии (Остерброк, Ферланд, 2006), для нейтрального кислорода силы столкновений взяты из статьи (Затсаринни, Таял, 2003). Решение уравнений стационарности с учетом столкновительных и радиативных переходов дает объемную мощность излучения линии (ϵ) для данных параметров T_e и χ . Светимость в линии находится умножением ϵ на объем, занимаемый кислородом $L = \epsilon V(M_O/M)\chi^{-1}$.

Результаты для модели с массой кислорода $15\,M_\odot$ представлены на рис. $1\,$ в виде диаграмм "отношение потоков в линиях—светимость дублета [O III] 5007, 4959 Å". Наблюдаемая светимость в линиях дублета [O III] на стадии $+276\,$ дней ($381\,$ день после взрыва) равна $\lg L = 41.01\,$ эрг с $^{-1}$, а отношение потоков линий [O III] $F(4359)/F(5007,4959) = 0.3 \pm 0.3$. Обе величины воспроизводятся при $T_e \approx 9000\,$ K и контрасте плотности $\chi \approx 3\,$ (рис. 1a). Следует подчеркнуть, что от-

ношение F(4359)/F(5007, 4959) является чувствительным индикатором электронной температуры.

Светимость дублета [О III] и отношение потоков [О III]/[О I] (рис. 1b) формально воспроизводятся в модели $M_O=15\,M_\odot$ при $T_e\approx8800\,\mathrm{K}$ и $\chi\approx3$. На самом деле профиль эмиссии [О I] заметно шире профиля эмиссии [О II] (см. Шульце и др., 2024), и это указывает на различие в распределении источников свечения этих линий вдоль радиуса (скорости), что не описывается нашей однозонной моделью.

Отношение потоков авроральной линии и небулярного дублета [O I] 5577Å/6300,6364Å (рис. 1c) является индикатором температуры и плотности в зоне свечения нейтрального кислорода. К сожаленю, на стадии +276 дней линия 5577 Å не видна из-за того, что она попадает на длинноволновый край широкой эмиссионной бленды линий Fe II; авроральная линия становится заметна лишь на поздней фазе $t \ge t_{\text{max}} +$ + 377 дней (Шульце и др., 2024). Верхний предел отношения 5577 Å/6300, 6364 Å указывает на температуру в зоне свечения нейтрального кислорода ≤7000 К (рис. 1с). Мы не приводим сравнение светимости в линии [O II] 7325 Å с наблюдаемой светимостью эмиссии 7300Å, поскольку линия [О II] блендируется с интенсивным дублетом [Са II] 7300 Å. Вместе с тем, заметим, что рассчитанная светимость эмиссии [О 11] не противоречит существенному вкладу этой линии в эмиссионную бленду 7300 Å.

В модели с массой кислорода $10\,M_\odot$ светимость в линиях дублета [О III] и отношение [О III] 4359 Å/5007, 4959 Å воспроизводятся при значениях параметров $T_e\approx 9000~{\rm K}$ и $\chi\approx 2$, сравнимых с параметрами модели $15\,M_\odot$. По этой причине мы не приводим рисунки

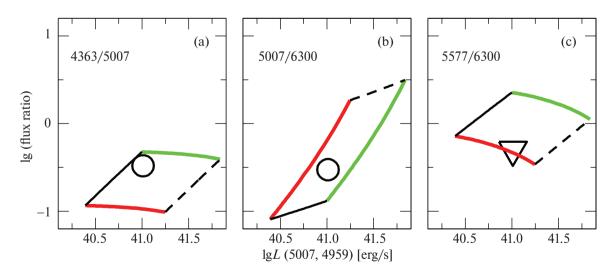
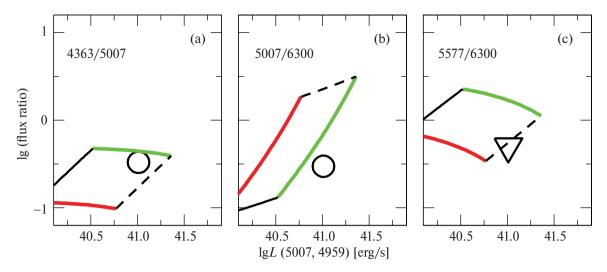



Рис. 1. Диагностическая диаграмма "отношение потоков—светимость линий [О III]" для модели с массой кислорода $15\,M_\odot$. (а) — Диаграмма для отношения потоков линий [О III] 4359 Å/5007, 4959 Å, (b) — для отношения потоков линий [О III] 5007, 4959 Å/[О I] 6300, 6364 Å, (c) — для отношения [О II] 5577 Å/[О I] 6300, 6364 Å. Круги показывают наблюдательные значения величин, треугольник обозначает верхний предел отношения потоков 5577 Å/[О I] 6300, 6364 Å. Цветными линиями показана зависимость от параметра χ при фиксированной температуре (7000 K — красная, 10 000 K — зеленая). Черной сплошной линией показана засисимость от температуры при фиксированном контрасте χ = 5, штриховая — при контрасте χ = 0.5.

Рис. 2. То же, что и на рис. 1, но при массе кислорода $5 \, M_{\odot}$.

Таблица 1. Параметры модели и светимость линий кислорода

M_O ,	T_e ,	χ	x_e	$L_d(O)$,	$L_{em}(O),$	η_h	$\eta_{h,num}$
M_{\odot}	K			10 ⁴² эрг/с	10 ⁴² эрг/с		
15	9000	3.3	0.59	3	2.3	0.77	0.75
10	9000	2	0.69	2	1.29	0.63	0.77
5	9200	1	0.86	1	5.2	0.51	0.79

для этого случая. В модели с массой кислорода 5 M_{\odot} результаты для отношения [O III] 4359 Å/5007, 4959 Å (рис. 2а) несколько отличаются. Светимость в линиях дублета [O III] и отношение [O III] 4359 Å/5007, 4959 Å воспроизводятся при $T_e \approx 9200~{\rm K}$ и $\chi \approx 1$. Большое модельное отношение потоков в линиях [O III]/[O I] при этих условиях (рис. 2b) является результатом малой светимости [O I] 6300 Å из-за высокой ионизации кислорода при относительно низкой плотности.

Исходные параметры, полученная суммарная светимость линий кислорода и другие величины приведены в табл. 1. В табл. 1 представлены последовательно масса кислорода, температура, контраст плотности, степень ионизации кислорода, мощность депозиции в кислород, суммарная светимость в линиях кислорода, доля депозиции, расходуемая на нагрев и определяемая из условия теплового баланса $\eta_h =$ $L_{em}(O)/L_d(O)$, а также величина $\eta_{h,num}$, полученная для найденной степени ионизации x_e с использованием зависимости $\eta_{h,num}(x_e)$, ранее рассчитанной для кислорода посредством решения уравнения Спенсера-Фано (Козма, Франссон, 1992). В модели с массой кислорода $15\,M_\odot$ величина $\eta_{h,num}$ совпадает с оценкой η_h из уравнения теплового баланса (табл. 1), а для $10\,M_{\odot}$ совпадает в пределах 20%. При массе кислорода 5 M_{\odot} различие достигает фактора 1.5. Это может рассматриваться как указание на большую массу кислорода ($10-15\,M_{\odot}$) в оболочке SN 2018ibb. Впрочем, поскольку используемая модель содержит существенные упрощения, данный вывод не является бесспорным. Главное то, что совпадение долей депозиции, идущей на нагрев (η_h и $\eta_{h,num}$), полученных разными методами при разумных величинах модельных параметров, можно рассматривать как подтверждение радиоактивной природы свечения SN 2018ibb в линиях [O III].

ОБСУЖДЕНИЕ

Цель работы заключалась в ответе на вопрос, можно ли в рамках радиоактивной модели свечения оболочки SLSN 2018ibb объяснить присутствие интенсивных эмиссионных линий кислорода [О III]. Выше было показано, что однозонная модель сверхновой с кинетической энергией 1.2×10^{52} эрг, массой оболочки сверхновой $60\,M_\odot$, содержащей $30\,M_\odot$ ⁵⁶Ni, позволяет описать светимость линий [О III] при разумных величинах параметров и принятых предположениях.

Достоинство однозонной модели — минимальный набор свободных параметров. Вместе с тем однозонная модель не может объяснить другие важные наблюдательные данные. Во-первых, профиль дублета [О I] заметно шире линий [О III] (Шульце и др., 2024), что указывает на формирование этих линий в различных зонах. В частности, это предполагает, что линии дублета [О I] излучаются преимущественно внешними, высоскоростными, слоями сверхновой, тогда как линии [О III] формируются, в основном, во внутренней зоне. Для описания этой картины нужна, как минимум, двухзонная модель. Во-вторых, однозон-

ная модель с температурой ≈9000 К предсказывает довольно интенсивную линию [O I] 5577 Å на стадии +276 дней, которая отсутствует в спектре и появляется лишь после +360 дня (Шульце и др., 2024). Относительно низкое наблюдаемое отношение потоков в линиях 5577 Å/6300, 6364 Å подчеркивает, что зоны формирования линий [О I] и [О III] не совпадают, и что в зоне свечения линий [О і] температура заметно ниже, $T_e \lesssim 7000 \, \mathrm{K}$. Оба наблюдаемых факта приводят к необходимости двухкомпоненной модели, в которой внутренний "горячий" кислород с температурой около 9000 К отвечает за излучение линий [О ііі], а внешний "холодный" кислород вносит основной вклад в излучение линий [О і]. Заметим, что несоответствие между излучением [О ііі] и [О і] отмечено при моделировании спектра кислорода в сверхновой LSO14an (SLSN), для которой модель маломассивной оболочки (Якстранд и др., 2017) вопроизводит интенсивность дублета [О ііі], но предсказывает слишком слабые линии дублета [О 1].

Возникает вопрос, почему более совершенная модель радиоактивного свечения кислорода в сверхновых категории PISN (Якстранд и др., 2017) в случае SN 2018ibb не воспроизводит светимость в линиях [О III], хотя при этом используется обоснованная гидродинамическоая модель PISN? Возможный ответ состоит в том, что в одномерной гидродиамической модели отсутствует макроскопическое перемешивание ⁵⁶Ni и несгоревшего кислорода. Между тем, такое перемешивание, которое предполагается в нашей простой модели, является принципиально важным фактором значительного увеличения депозиции энергии гамма-квантов распада ⁵⁶Со в кислородное вещество.

Представляют интерес условия, которые способствуют появлению сильных линий [О III] в сверхновых категории PISN. Рассмотрим ионизационный баланс между ионами О II и О III с относительными долями y_2 и y_3 при электронной концентрации $n_e \approx y_2 n$,

$$\frac{\epsilon_d y_2}{w_2} = \alpha_2 y_2 y_3 n^2 \,, \tag{1}$$

где $w_2 = 2.3I_2$ — работа, затраченная на образование одного иона О III при ионизации быстрым электроном иона О II с потенциалом ионизации I_2 . Учитывая, что $\epsilon_d \propto M_{ni}/V$, объем $V \propto E^{3/2}/M^{3/2}$, а масса синтезированного ⁵⁶Ni для модельных PISN с гелиевыми ядрами $100-130\,M_\odot$ зависит от энергии взрыва приблизительно как $M_{ni} \propto E^3$ (Кэйзен и др., 2011), получаем из соотношения (1)

$$y_3 \propto M_{ni}^{3/2} M^{-7/2}$$
 (2)

Данное соотношение показывает, что высокая доля иона О III и, следовательно, большее отношение потоков в линиях 5007, 4959 Å/6300, 6364 Å ожидается у сверхновых PISN с большей массой ⁵⁶Ni и меньшей массой оболочки. Взрыв голого кислородного

ядра с большой массой выброшенного 56 Ni в случае SN 2018ibb создает наиболее благоприятные условия для появления интенсивных эмиссионных линий [О III] при условии макроскопического перемешивания 56 Ni и кислорода.

Соотношение (2) позволяет понять, почему среди сверхновых категории PISN относительная интенсивность линий [О III]/[О I] меняется в широких пределах. Представим, что в некоторой сверхновой категории PISN масса оболочки сверхновой за счет гелия в 2 раза выше, чем в случае SN 2018ibb, а масса ⁵⁶Ni в 2 раза меньше. Тогда доля иона [О III] будет в 30 раз меньше, и практически во столько же раз отношение потоков 5007,4959Å/6300,6364Å будет меньше, чем в SN 2018ibb.

ЗАКЛЮЧЕНИЕ

Анализ ионизации и возбуждения кислорода в рамках простой модели оболочки сверхновой SN 2018ibb с реалистичными значениями массы оболочки, кинетической энергии и массы синтезированного ⁵⁶Ni приводит к выводу, что наблюдаемые эмиссионные линии [О ііі] могут возникать в результате депозиции энергии радиоактивного распада ⁵⁶Co в кислородное вещество при условии макроскопического перемешивания ⁵⁶Ni и кислорода. Показано, что значительный разброс отношения потоков в линиях 5007, 4959Å/6300Å среди сверхновых категории PISN может быть обусловлен различием полной массы оболочки и массы ⁵⁶Ni. Увеличение доли иона О III при большей массе ⁵⁶Ni и меньшей массе оболочки объясняет, почему в SN 2018ibb наблюдаются интенсивные линии [О 111].

СПИСОК ЛИТЕРАТУРЫ

- 1. Ален (S.P. Ahlen), Rev. Mod. Phys. **52**, 121 (1980).
- 2. Баркат и др. (Z. Barkat, G. Rakavy, and N. Sack), Phys. Rev. Lett. **18**, 379 (1967).
- 3. Вусли и др. (S.E. Woosley, A. Heger, and T.A. Weaver), Rev. Mod. Phys. **74**, 1015 (2002).
- 4. Вусли и др. (S.E. Woosley, S. Blinnikov, and A. Heger), Nature **450**, 390 (2007).
- 5. Затсаринни, Таял (O. Zatsarinni and S.S. Tayal), Astrophys. J. Suppl. Ser. **148**, 375 (2003).
- 6. Кэйзен и др. (D. Kasen, S.E. Woosley, and A. Heger), Astrophys. J. **734**, 102 (2011).
- 7. Козма, Франссон (С. Kozma and C. Fransson), Astrophys. J. **390**, 602 (1992).
- 8. Козырева и др. (A. Kozyreva, L. Shingles, P. Baklanov, et al.), Astron. Astrophys. **689**, A60 (2024).
- 9. Козырева и др. (A. Kozyreva, M. Gilmer, R. Hirschi, et al.), MNRAS **464**, 2854 (2017).
- 10. Луннан и др. (R. Lunnan, R. Chornock, E. Berger, et al.), Astrophys. J. **831**, 144 (216).
- 11. Остерброк, Ферланд (D.E. Osterbrock and G.J. Ferland), *Astrophysics of gaseous nebulae and active galactic nuclei* (Sausalito, CA: Univer. Sci. Books, 2006).

- 12. Сазерлэнд, Уилер (P.G. Sutherland and J.C. Wheeler), Astrophys. J. **280**, 282 (1984).
- 13. Taprep (S.B. Tarter), Astrophys. J. 168, 313 (1971).
- 14. Хегер, Вусли (A. Heger and S.E. Woosley), Astrophys. J. **567**, 532 (2002).
- 15. Чугай (N.N. Chugai), ArXiv e-prints [arXiv:2410.17580] (2024).
- 16. Шульце и др. (S. Schulze, C. Fransson, A. Kozyreva, et. al.), Astron. Astrophys. **683**, A223 (2024).
- 17. Якстранд и др. (A. Jerkstrand, S.J. Smartt, C. Inserra, et al.), Astrophys. J. **835**, 13 (2017).