ПОИСК АКТИВНЫХ ЯДЕР В КАРЛИКОВЫХ ГАЛАКТИКАХ В ПОЛЕ М81 ПО ДАННЫМ ОБСЕРВАТОРИИ ИНТЕГРАЛ

© 2023 г. И. А. Мереминский^{1*}, С. Ю. Сазонов¹, Р. А. Кривонос¹, И. Д. Караченцев²

¹Институт космических исследований РАН, Москва, Россия

²Специальная астрофизическая обсерватория РАН, Нижний Архыз, Россия

Поступила в редакцию 14.11.2022 г.

После доработки 08.12.2022 г.; принята к публикации 08.12.2022 г.

По данным многолетних наблюдений обсерватории ИНТЕГРАЛ в жестком рентгеновском диапазоне получены верхние пределы на болометрическую светимость ядер 72 близких карликовых галактик, расположенных в поле M81: $L_{\rm bol}\lesssim 10^{41}$ эрг с $^{-1}$. Это позволило ограничить долю галактик, в которых протекает аккреция (с темпом выше 0.1% от критического) вещества на центральную черную дыру. В простых предположениях о массах черных дыр и распределении темпов аккреции эта доля не превышает 9%. Для получения более строгих ограничений требуются оценки масс черных дыр в исследуемых галактиках.

Ключевые слова: обзоры неба, рентгеновские источники, активные ядра галактик.

DOI: 10.31857/S0320010823010060, EDN: PKOJOG

ВВЕДЕНИЕ

Согласно современным представлениям, в центральных областях большинства массивных галактик в настоящую эпоху находятся черные дыры с массами $M_{
m BH} pprox 10^6 - 10^{10} \ M_{\odot}$ — так называемые сверхмассивные черные дыры (СМЧД). С другой стороны, на красных смещениях $z\gtrsim 6$ обнаруживаются квазары, центральные \widetilde{CMYJ} в которых уже достигли массы в $10^9~M_{\odot}$ и более (см. рис. 1 в обзоре Инашёши и др., 2020, и приведенные в нем ссылки). Чтобы объяснить быстрое формирование таких массивных объектов в ранней Вселенной, обычно предполагают существование "затравочных" черных дыр (см. обзор Волонтери и др., 2021), из которых путем аккреции и слияний в дальнейшем получаются СМЧД. Исходные массы затравочных ЧД неизвестны; в различных моделях предполагается, что они могут лежать в диапазоне от десятков—сотен M_{\odot} (т.е. звездных) до миллионов M_{\odot} .

Возможным способом проверки рассматриваемых сценариев зарождения ЧД в ядрах галактик являются наблюдения маломассивных (карликовых) галактик (Волонтери и др., 2008) с целью измерения доли галактик с центральными ЧД и измерения масс последних. В этой связи необходимо отметить, что маломассивные центральные ЧД

могут в принципе дожить до современной эпохи не только в карликовых, но и в больших галактиках с бедной историей слияний (Субраманьян и др., 2016; Чилингарян и др., 2018; Сабурова и др., 2021). При этом звездные балджи таких галактик обычно оказываются сравнительно маломассивными, что подтверждает глобальную взаимосвязь эволюции балджей и центральных ЧД (Корменди, Хо, 2013).

Поиск и исследование карликовых галактик даже в локальной Вселенной являются нетривиальной задачей. Из-за их низкой поверхностной яркости (22-26) зв. вел. на кв. сек. дуги в В-фильтре (Караченцев, Кайсина, 2019) для ближайших к Млечному Пути групп галактик) требуются длительные наблюдения и специализированные подходы к обработке данных. Одним из возможных способов поиска карликовых галактик с центральными черными дырами является их отбор по данным чувствительных широкопольных обзоров (в т.ч. обзоров всего неба) в рентгеновском диапазоне, особенно на энергиях выше 10 кэВ. Обнаружение яркого (со светимостью $L_X \gtrsim 10^{40}$ эрг с $^{-1}$) источника в галактике почти однозначно указывает на то, что там происходит аккреция на массивную (более $10^2~M_{\odot}$) черную дыру. При этом использование более жесткого диапазона позволяет уменьшить возможное загрязнение выборки ультраяркими рентгеновскими источниками (ULX), поскольку на этих энергиях в их

^{*}Электронный адрес: i.a.mereminskiy@gmail.com

спектрах обычно наблюдается экспоненциальный завал (см., например, Сазонов и др., 2014; Каарет и др., 2017). Кроме того, в этом диапазоне излучение гораздо меньше подвержено поглощению в газопылевом торе вокруг черной дыры, которое может быть большим на энергиях ниже 10 кэВ даже в случае активных ядер маломассивных галактик (см., например, Анш и др., 2022).

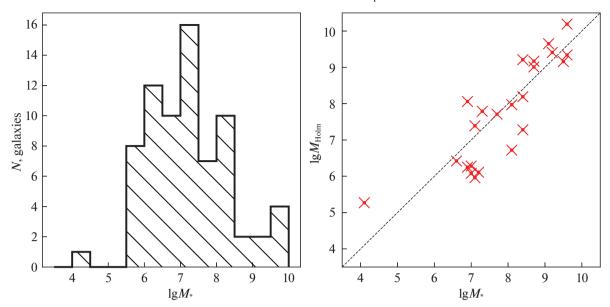
В настоящей работе был проведен поиск активных ядер (АЯГ) в карликовых галактиках, принадлежащих к крупнейшей близкой группе галактик М81 (Караченцев и др., 2002) по данным наблюдений обсерватории ИНТЕГРАЛ (Винклер и др., 2003), накопленным за более чем 17 лет ее работы на орбите. Центральная галактика группы — М81 — расположена на расстоянии 3.7 Мпк (Караченцев и др., 2018). Также в поле нашего обзора попала группа галактик NGC 2787, лежащая значительно дальше, на 7.4 Мпк (Караченцев и др., 2018). Поэтому карликовые галактики этой группы тоже были включены в исследование.

ПОЛЕ М81

Для построения карты неба были использованы все доступные данные, полученные с марта 2003 г. по июль 2021 г. прибором ISGRI/IBIS (Лебран и др., 2003). Использовался набор программного обеспечения, разработанный в ИКИ РАН (Кривонос и др., 2010; Чуразов и др., 2014). Для построения обзора был взят энергетический диапазон 17—60 кэВ, поскольку в нем достигается наибольшая чувствительность, как было показано в работе (Кривонос и др., 2022).

Поле М81 является уникальным по накопленной экспозиции и достигнутой чувствительности в жестком рентгеновском диапазоне. Изначально это поле наблюдалось в ходе программ, посвященных исследованию спектров ультраярких рентгеновских источников в близких галактиках (M82 X-1, Hol IX X-1, Сазонов и др., 2014) и поиску линий радиоактивного распада 56 Со после вспышки сверхновой SN2014J типа Ia в галактике М82 (Чуразов и др., 2014). Глубокий обзор поля М81, основанный на этих данных, был представлен в работе (Мереминский и др., 2016). Начиная с 2019 г. по нашим заявкам проводятся регулярные наблюдения этого поля обсерваторией ИНТЕ-ГРАЛ, основной задачей которых является поиск сильнопоглощенных АЯГ по совокупности данных наблюдений обсерватории ИНТЕГРАЛ в жестких рентгеновских лучах и квази-одновременного обзора всего неба обсерватории СРГ (Сюняев и др., 2021) в более мягком рентгеновском диапазоне. Благодаря столь продолжительным наблюдениям, к настоящему времени в поле М81 с помощью

прибора IBIS/ISGRI удалось достичь предельной чувствительности лучше 0.2 мКраб, что делает его глубочайшим внегалактическим полем обсерватории ИНТЕГРАЛ.


В настоящей работе была использована центральная часть поля (радиусом 14° , с координатами центра RA, Dec = 146.3° , 69.9° FK5, эпоха J2000), в которой всюду достигается чувствительность лучше 0.45 мКраб $(6.4 \times 10^{-12} \ \text{эрг см}^{-2} \ \text{с}^{-1})$ в диапазоне 17-60 кэВ, а предельная чувствительность составляет 2.9×10^{-12} эрг см $^{-2}$ с $^{-1}$ для детектирования на уровне значимости 4.5σ (при таком пороге ожидаемое количество ложных источников составляет значительно менее одного объекта на все поле). Детектирование источников выполнялось в соответствии с процедурами, описанными в работе (Кривонос и др. 2022).

ВЫБОРКА КАРЛИКОВЫХ ГАЛАКТИК

Для составления выборки мы использовали данные каталога Местного объема (Караченцев и др., 2013; Караченцев, Кайсина, 2019). Всего было отобрано 78 галактик, лежащих в центральной части поля ($R=14^{\circ}$). Для всех галактик по известной наблюдаемой звездной величине в K-фильтре (для некоторых галактик из выборки звездная величина в K-фильтре была рассчитана по наблюдаемой звездной величине в B-фильтре, см. описание каталога Караченцева и др., 2013) была рассчитана звездная масса M_{st} в предположении, что отношение массы к светимости $\Upsilon_* = 1~M_{\odot}/L_{\odot,K}$ (Бэлл и др., 2003). Далее, из выборки были исключены галактики M81, M82 и NGC2787, звездная масса которых $\log(M_*) \gtrsim 10$, и которые, очевидно, не являются карликовыми, а также галактика HIJASS J1021+6842, обнаруженная в линии нейтрального водорода 21 см (Бойс и др., 2001) и не зарегистрированная в оптических обзорах.

Угловое разрешение телескопа IBIS (\approx 12′, Лебран и др., 2003) накладывает ограничения на возможность разделить собственное излучение карликовой галактики от излучения центральной галактики группы, если в ней присутствует активное ядро, или от других рентгеновских источников. Мы исключили из выборки все карликовые галактики, расположенные на угловом расстоянии менее 12' от известных рентгеновских источников в поле (Мереминский и др., 2016). Всего таких галактик оказалось две — HolmIX и BK3N: обе расположены близко к M81, активное ядро которой является ярким источником жесткого рентгеновского излучения (Сазонов и др., 2014).

Всего в выборке осталось 72 галактики, значительная часть (55) из которых имеет массу $\log M_* \le 8$ (рис. 1). Кроме того, для 24 галактик выборки

Рис. 1. Слева: распределение карликовых галактик выборки по звездной массе, определенной по звездной величине в K-фильтре. Справа: корреляция звездной массы и полной массы внутри холмбергского радиуса для подвыборки галактик.

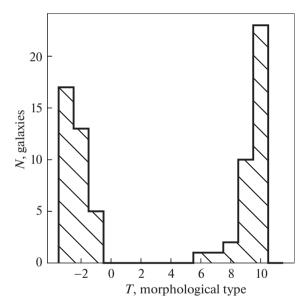
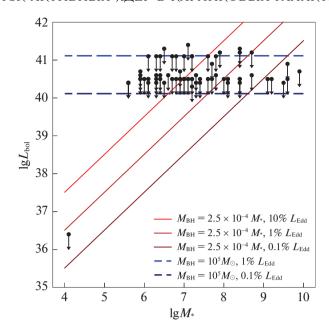


Рис. 2. Распределение карликовых галактик выборки по морфологическому типу Т.


имеется оценка полной массы внутри холмбергского радиуса (Холмберг, 1958), сделанное по измерениям в линии 21 см (Робертс, Хайнес, 1994), и она хорошо коррелирует с измерением звездной массы по NIR-фотометрии.

Некоторые карликовые галактики в выборке также не разрешаются телескопом IBIS, в частности, плотные группы вблизи М81 и NGC2787. Несмотря на это, мы приводим верхние пределы на

рентгеновскую светимость, не учитывая возможный вклад нескольких компонент. Большинство объектов в выборке (35) являются сфероидальными галактиками раннего типа (с морфологическим типом T по де Вокулёру (де Вокулер и др., 1991, -3...-1), примерно столько же (33) иррегулярных галактик (T=9-10). Распределение галактик по морфологическому типу показано на рис. 2.

Следует отметить, что большинство галактик в выборке находятся на расстояниях в 3—4.5 Мпк и принадлежат к группе М81 (Караченцев и др., 2002). Также в выборке много галактик группы

 $^{^{1}}$ Т.е. внутри изофоты 26.5 зв. величины на кв. угл. сек в B-фильтре.

Рис. 3. Верхние пределы на болометрическую светимость центральных ЧД в карликовых галактиках выборки. Сплошные линии соответствуют темпам аккреции в $10^{-3}-0.1$ эддингтоновского, в предположении, что масса центральной ЧД пропорциональна звездной массе галактики $M_{\rm BH}=2.5\times10^{-4}M_*$, а пунктирные — темпам аккреции в $10^{-3}-10^{-2}$ эддингтоновского для ЧД с массой $10^5~M_\odot$.

NGC 2787, лежащих на расстоянии 7.5 Мпк. Прочие галактики лежат на больших расстояниях, за исключением карликовой сфероидальной галактики UMa II (Цукер и др., 2006), являющейся спутником Млечного Пути и расположенной на расстоянии в 30 кпк. Вся выборка представлена в табл. 1; для каждой галактики приведены небесные координаты (на эпоху 2000), расстояние, оценка звездной массы, морфологический тип Т и тип распределения поверхностной яркости (см. часть 3 каталога Караченцев и др., 2013).

ОГРАНИЧЕНИЯ НА БОЛОМЕТРИЧЕСКУЮ СВЕТИМОСТЬ АЯГ

Полученные нами карты позволяют напрямую ограничить наблюдаемый поток в жестком рентгеновском диапазоне от интересующих источников, а уже исходя из измеренного рентгеновского потока можно сделать предположение о полной болометрической светимости АЯГ. В работе (Сазонов и др., 2012) по данным многоволновых наблюдений 68 ярких сейфертовских галактик, отобранных по результатам обзора всего неба обсерватории ИНТЕГРАЛ, было определено отношение наблюдаемой светимости $L_{17-60\;\mathrm{keV}}$ в жестком рентгеновском диапазоне к болометрической светимости. Оно оказалось равным в среднем $L_{
m bol}/L_{17-60~{
m keV}}=9$, с характерным разбросом 6-15. Далее в наших расчетах используется коэффициент $L_{\text{bol}}/L_{17-60 \text{ keV}} = 9.$

Ни одна из галактик выборки не регистрируется в нашем обзоре. Для известного положения каждой из галактик мы рассчитали 3σ верхний предел на поток в диапазоне 17-60 кэВ. В табл. 1 приведены полученные ограничения на болометрическую светимость АЯГ в карликовых галактиках в поле M81. Полученные из жесткого рентгеновского диапазона ограничения соответствуют характерным болометрическим светимостям $L_{\rm bol}\lesssim 10^{41}$ эрг с $^{-1}$ для расстояния в 5 Мпк.

В современных внегалактических обзорах, проводимых с помощью зеркальных рентгеновских телескопов, находят кандидатов в АЯГ в карликовых галактиках с болометрической светимостью в 1—10% от эддингтоновской (Пардо и др., 2016; Бирчалл и др., 2020). Есть ли такие в нашей выборке?

На рис. З показаны полученные в данной работе верхние пределы на болометрическую светимость ядер карликовых галактик. Для сравнения показаны линии, соответствующие разным (0.01-10%) долям эддингтоновской светимости в предположении, что масса центральной ЧД пропорциональна звездной массе галактики с коэффициентом $M_{\rm BH}=2.5\times10^{-4}\times M_*$. Эта зависимость измерена для обычных (массивных) галактик (Рейнес, Волонтери, 2015; Грини и др., 2020) и характеризуется значительной дисперсией. Для менее массивных галактик соотношение между $M_{\rm BH}$ и M_* плохо изучено. Немногочисленные имеющиеся оценки масс

Таблица 1. Верхние пределы на болометрическую светимость для галактик в поле M81

Индекс	Имя	RA	Dec	<i>D</i> , Мпк	$\log M_*$	$T_{ m dw}$	T	$\log L_{ m bol}$
1	NGC2366	112.2275	69.2053	3.28	8.7	Im N	9	40.6
2	DDO044	113.5471	66.8861	3.21	7.8	Sph L	-3	40.6
3	NGC2403	114.2142	65.5994	3.19	9.9		6	40.7
4	MADCASH J0742+65dw	115.6621	65.4172	3.39	5.9	Sph L	-2	40.7
5	HolmII	124.7667	70.7142	3.47	9.2	Im N	9	40.5
6	KDG052	125.9833	71.0294	3.42	7.0	Ir L	10	40.5
7	Dw0827+6452	126.8179	64.8739	3.70	5.9	Sph L	-2	40.6
8	DDO053	128.5271	66.1792	3.68	7.3	Ir N	10	40.6
9	UGC04483	129.2625	69.7753	3.58	7.1	Ir N	10	40.5
10	UMa II	132.875	63.13	0.03	4.1	Sph X	-2	36.4
11	PGC025409	135.7108	71.3061	7.50	7.6	BCD N	9	41.1
12	Dw0910+7326	137.565	73.44	3.70	7.4	Sph L	-2	40.5
13	Dw0910+6942	137.6754	69.7031	7.50	7.2	Sph L	-2	41.1
14	Dw0916+6944	139.1821	69.7336	7.50	6.4	Irr L	10	41.1
15	Dw0918+6935	139.6454	69.5953	7.50	6.8	Sph L	-2	41.1
16	Dw0919+6932	139.7825	69.5483	7.50	6.1	Tr L	10	41.1
17	UGC04918	139.8238	69.8011	7.50	7.8	Im N	9	41.1
18	Dw0919+6955	139.8912	69.9222	7.50	7.0	Sph L	-2	41.1
19	Dw0920+6924	140.0108	69.4125	7.50	6.7	Sph L	-2	41.1
20	Dw0920+7017	140.0933	70.2914	7.50	7.2	Sph L	-2	41.1
21	UGC04998	141.3004	68.3831	8.24	8.7	BCD N	9	41.2
22	[CKT2009]d0926+70	141.6162	70.5067	3.40	6.1	Tr L	10	40.4
23	Dw0927+6818	141.8658	68.3153	7.50	6.3	Irr L	10	41.1
24	[CKT2009]d0934+70	143.5154	70.2158	3.02	7.2	Sph X	-3	40.3
25	[CKT2009]d0939+71	144.8162	71.3117	3.65	5.6	Sph L	10	40.4
26	HolmI	145.1346	71.1864	4.02	8.1	Ir N	10	40.5
27	[CKT2009]d0944+69	146.0937	69.2111	3.84	5.9	Sph X	-3	40.5
28	[CKT2009]d0944+71	146.1433	71.4825	3.47	7.4	Sph L	-1	40.4
29	F8D1	146.1962	67.4386	3.75	7.6	Sph L	-3	40.5
30	FM1	146.2917	68.765	3.78	7.7	Sph L	-3	40.5
31	NGC2976	146.815	67.9136	3.66	9.5		7	40.4
32	KK77	147.5417	67.5067	3.80	8.1	Sph L	-3	40.5

Таблица 1. Продолжение

Индекс	Имя	RA	Dec	D, Мпк	$\log M_*$	$T_{ m dw}$	T	$\log L_{ m bol}$
33	[CKT2009]d0955+70	148.8067	70.4081	3.45	6.5	Sph X	-3	40.4
34	JKB83	148.9567	69.3325	3.70	5.6	Ir N	10	40.4
35	KDG061	149.2612	68.5917	3.66	8.1	Sph N	-1	40.4
36	KDG61em	149.2812	68.5983	3.70	6.0	Ir N	10	40.5
37	ClumpI	149.3383	68.7153	3.60	5.6	Ir N	10	40.4
38	A0952+69	149.3708	69.2722	3.93	6.9	Ir L	10	40.5
39	[CKT2009]d0958+66	149.7021	66.8497	3.82	7.1	BCD N	9	40.5
40	[CKT2009]d0959+68	149.8879	68.6569	4.27	6.4	Ir L	10	40.6
41	ККН57	150.0667	63.185	3.68	7.0	Sph L	-3	40.5
42	ClumpIII	150.1683	68.6603	3.60	5.6	Ir L	10	40.4
43	NGC3077	150.8375	68.7339	3.85	9.6	dEem N	9	40.5
44	GARLAND	150.925	68.6933	3.82	6.8	Ir X	10	40.5
45	BK5N	151.1679	68.2556	3.70	7.2	Sph L	-3	40.5
46	KDG063	151.2804	66.555	3.65	8.1	Tr L	-3	40.5
47	UGC05423	151.3775	70.3644	8.87	8.4	Ir N	10	41.2
48	d1005+68	151.3825	68.2389	3.98	5.9	Sph X	-2	40.5
49	[CKT2009]d1006+67	151.6925	67.2011	3.61	6.3	Sph X	-3	40.4
50	d1006+69	151.7312	69.9047	4.33	6.3	Sph X	-3	40.6
51	KDG064	151.7579	67.8275	3.75	8.0	Tr L	-3	40.5
52	IKN	152.0246	68.3992	3.75	8.4	Sph X	-3	40.5
53	d1009+68	152.3096	68.7569	3.73	6.3	Sph X	-3	40.5
54	[CKT2009]d1009+70	152.3954	70.5486	9.00	7.9	Sph L	-1	41.2
55	UGC05497	153.2017	64.1075	3.73	7.2	BCD N	9	40.5
56	[CKT2009]d1014+68	153.7325	68.7575	3.84	6.1	Sph X	-1	40.5
57	[CKT2009]d1015+69	153.7787	69.0375	4.07	6.1	Sph X	-1	40.5
58	HS117	155.355	71.1161	3.96	6.9	Tr L	10	40.5
59	DDO078	156.6162	67.6567	3.48	8.4	Sph L	-3	40.4
60	IC2574	157.0933	68.4161	3.93	9.1		8	40.5
61	[CKT2009]d1028+70	157.1654	70.2336	3.84	7.0	BCD N	10	40.5
62	DDO082	157.6458	70.6194	3.93	8.4	Im N	9	40.5
63	BK6N	158.6329	66.0117	3.31	7.3	Sph L	-3	40.4
64	[CKT2009]d1041+70	160.32	70.1508	3.70	6.4	Sph X	-2	40.5

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 49 $\,$ № 1 $\,$ 2023

Таблица 1. Окончание

Индекс	Имя	RA	Dec	<i>D</i> , Мпк	$\log M_*$	$T_{ m dw}$	T	$\log L_{ m bol}$
65	DDO087	162.4021	65.5306	8.51	8.4	Ir L	10	41.3
66	Dw1051+6416	162.8171	64.2781	9.00	6.5	Sph L	-2	41.3
67	KDG073	163.2379	69.5458	3.91	6.6	Ir L	10	40.6
68	KDG74	165.5908	70.2639	3.70	6.7	Sph L	-2	40.5
69	UGC06456	172.0025	78.9914	4.63	7.7	Ir N	10	40.9
70	UGC06451	172.1933	79.6019	3.70	6.9	Im N	9	40.7
71	[KK98] 125	183.1746	68.9272	8.00	7.1	Ir L	10	41.4
72	NGC4236	184.1804	69.4656	4.41	9.6		8	40.9

центральных ЧД в галактиках с массами $\log M_* =$ = 9 - 9.5 (в массах Солнца) демонстрируют значительный разброс $\log M_{
m BH} \sim 4-6.5$ (Чилингарян и др., 2018; Балдассарэ и др., 2020), а для компактных карликовых галактик в работе (Ферре и др., 2021) было отмечено явное "уплощение" зависимости $M_{\rm BH}-M_*$ в области $6 \leq \log M_* \leq 8$, в которой массы центральных ЧД оказываются на 3-4 порядка больше, чем следует из параметризации (Грини и др., 2020). Поэтому на рис. З также нанесены линии, соответствующие уровням в 0.1-1% от эддингтоновской светимости для ЧД с массой $10^5~M_{\odot}$. Таким образом, можно сделать осторожный вывод, что болометрическая светимость центральных черных дыр большинства карликовых галактик нашей выборки, по-видимому, не превышает нескольких процентов от эддингтоновского предела.

ДОЛЯ АЯГ СРЕДИ КАРЛИКОВЫХ ГАЛАКТИК ПОЛЯ М81

Поскольку АЯГ в карликовых галактиках выборки не были обнаружены, по полученным данным можно ограничить частоту, с которой такие объекты встречаются в Местном объеме Вселенной. Для этого мы провели следующую симуляцию. Пусть в некоторой доле F_{AGN} карликовых галактик протекает аккреция на центральную ЧД с массой $10^5~M_{\odot}$ (что характерно для карликовых галактик со звездными массами $\log M_* \approx 9$ (Чилингарян и др., 2018, Балдассарэ и др., 2020), с темпом аккреции $\lambda_{\mathrm{Edd}} = 0.1 - 10\%$ относительно эддингтоновской светимости, причем все значения внутри этого интервала равновероятны (указания на такое распределение темпов аккреции в близких галактиках см. в Бирчал и др., 2020, 2022). Тогда можно определить такую F_{AGN} , при которой более

чем в 90% случаев в исследуемой выборке карликовых галактик не регистрировалось бы ни одного объекта — в соответствии с нашими наблюдениями. Для определенной таким образом доли АЯГ, благодаря большому размеру выборки, удается получить достаточно строгий верхний предел $F_{\rm AGN}\lesssim 3.3\%$.

В массивных галактиках ближней Вселенной (z<0.15), зарегистрированных в жестком рентгеновском диапазоне, распределение темпов аккреции $f(\lambda_{\rm Edd})$ может быть описано степенным законом с показателем около -0.7 (Прохоренко, Сазонов, 2021). Если предположить, что для карликовых галактик распределение темпов аккреции также следует степенному распределению с показателем -1 в диапазоне $\lambda_{\rm Edd}=0.1-10\%$, то, повторяя процедуру, описанную выше, можно получить более консервативную оценку на долю АЯГ в близких карликовых галактиках: $F_{\rm AGN}\lesssim 9.4\%$.

ЗАКЛЮЧЕНИЕ

По данным многолетних наблюдений обсерватории ИНТЕГРАЛ в жестком рентгеновском диапазоне получены верхние пределы на болометрическую светимость ядер 72 близких карликовых галактик, расположенных в поле М81. В простых предположениях о населении центральных ЧД эта выборка позволяет ограничить долю активных ядер в карликовых галактиках в Местном объеме на уровне $F_{\rm AGN} \lesssim 9\%$. Для получения более строгих ограничений требуются оценки масс черных дыр в исследуемых галактиках. Полученный предел сравним с другими имеющимися оценками доли активных ядер в карликовых галактиках (Шрамм и др., 2013; Лимонс и др., 2015; Прадо и др., 2015; Бирчалл и др., 2022), однако данные ИНТЕГРАЛ позволяют эффективно исследовать галактики со

звездной массой $\log M_* < 8$, которые сложно изучать за пределами Местного объема.

Большую часть исследованной выборки составили галактики, принадлежащие к группе М81. Они делятся примерно поровну между галактиками ранних и позлних типов. Благоларя близкому расположению группы М81 физические свойства многих из этих галактик достаточно хорошо изучены (см., например, Чибукас и др., 2013). В частности, известно, что звездное население сфероидальных галактик группы является очень старым (хотя и в них встречаются локальные области звездообразования — например в DDO044, Караченцев и др., 2011). В то же время в значительной доле галактик позднего типа группы М81 выявлено молодое звездное население, что свидетельствует о недавних вспышках звездообразования, которое продолжается в некоторых галактиках и сейчас с характерными темпами, около $10^{-2...-3}~M_{\odot}~{\rm год}^{-1}$ (подробнее см. Караченцев, Кайсина, 2019), в том числе в центральных областях галактик. Это говорит о том, что в их ядрах может содержаться заметное количество холодного газа, который мог бы подпитывать аккрецию на центральную ЧД. Поэтому поиск АЯГ в карликовых галактиках группы М81 несомненно стоит продолжить. Мы надеемся уже в скором времени получить более строгие ограничения на присутствие таких объектов в этой группе по данным продолжающегося рентгеновского обзора неба обсерватории СРГ.

Работа поддержана грантом РНФ 19-12-00396. Авторы благодарят рецензентов за полезные замечания.

СПИСОК ЛИТЕРАТУРЫ

- 1. Анш и др. (S. Ansh, C.-T.J. Chen, W.N. Brandt, C.E. Hood, E.S. Kammoun, G. Lansbury, et al.), arXiv e-prints p. arXiv:2209.09913 (2022).
- 2. Балдассарэ и др. (V.F. Baldassare, C. Dickey, M. Geha, and A.E. Reines), Astrophys. J. (Lett.) **898(1)**, L3 (2020).
- 3. Бирчалл и др. (K.L. Birchall, M.G. Watson, and J. Aird), MNRAS **492(2)**, 2268 (2020).
- 4. Бирчалл и др. (K.L. Birchall, M.G. Watson, J. Aird, and R.L.C. Starling), MNRAS **510(3)**, 4556 (2022).
- 5. Бойс и др. (P.J. Boyce, R.F. Minchin, V.A. Kilborn, M.J. Disney, R.H. Lang, C.A. Jordan, et al.), Astrophys. J. (Lett.) **560(2)**, L127 (2001).
- 6. Бэлл и др. (E.F. Bell, D.H. McIntosh, N. Katz, and M.D. Weinberg), Astrophys. J. Suppl. Ser. **149(2)**, 289 (2003).
- 7. Винклер и др. (С. Winkler, T.J.L. Courvoisier, G. Di Cocco, N. Gehrels, A. Giménez, S. Grebenev, et al.), Astron. Astrophys. 411, L1 (2003).
- 8. Волонтери и др. (M. Volonteri, G. Lodato, and P. Natarajan), MNRAS **383(3)**, 1079 (2008).

- 9. Волонтери и др. (M. Volonteri, M. Habouzit, and M. Colpi), Nature Rev. Phys. **3(11)**, 732 (2021).
- 10. Грини и др. (J.E. Greene, J. Strader, and L.C. Ho), Ann. Rev. Astron. Astrophys. **58**, 257 (2020).
- 11. Инаёши и др. (K. Inayoshi, E. Visbal, and Z. Haiman), Ann. Rev. Astron. Astrophys. **58**, 27 (2020).
- 12. Kaapeт и др. (P. Kaaret, H. Feng, and T.P. Roberts), Ann. Rev. Astron. Astrophys. **55(1)**, 303 (2017).
- 13. Караченцев и др. (I.D. Karachentsev, E.I. Kaisina, and D.I. Makarov), MNRAS **479(3)**, 4136 (2018).
- 14. Караченцев и др. (I.D. Karachentsev, D.I. Makarov, and E.I. Kaisina), Astron. J. **145(4)**, 101 (2013).
- 15. Караченцев, Кайсина (І.D. Karachentsev and E.I. Kaisina), Astrophys. Bull. **74(2)**, 111 (2019).
- 16. Караченцев и др. (I.D. Karachentsev, E. Dolphin, D. Geisler, E.K. Grebel, P. Guhathakurta, P.W. Hodge, et al.), Astron. Astrophys. **383**, 125 (2002).
- 17. Караченцев и др. (I. Karachentsev, E. Kaisina, S. Kaisin, and L. Makarova), MNRAS **415(1)**, L31 (2011).
- 18. Корменди, Xo (J. Kormendy and L.C. Ho), Ann. Rev. Astron. Astrophys. **51(1)**, 511 (2013).
- 19. Кривонос и др. (R. Krivonos, M. Revnivtsev, S. Tsygankov, S. Sazonov, A. Vikhlinin, M. Pavlinsky, et al.), Astron. Astrophys. **519**, A107 (2010).
- 20. Кривонос и др. (R.A. Krivonos, S.Y. Sazonov, E.A. Kuznetsova, A.A. Lutovinov, I.A. Mereminskiy, and S.S. Tsygankov), MNRAS **510(4)**, 4796 (2022).
- 21. Лебран и др. (F. Lebrun, J.P. Leray, P. Lavocat, J. Crétolle, M. Arqu'es, C. Blondel, et al.), Astron. Astrophys. 411, L141 (2003).
- 22. Лимонс и др. (S.M. Lemons, A.E. Reines, R.M. Plotkin, E. Gallo, and J.E. Greene), Astrophys. J. **805(1)**, 12 (2015).
- 23. Мереминский и др. (I.A. Mereminskiy, R.A. Krivonos, A.A. Lutovinov, S.Y. Sazonov, M.G. Revnivtsev, and R.A. Sunyaev), MNRAS 459(1), 140 (2016).
- 24. Пардо и др. (K. Pardo, A.D. Goulding, J.E. Greene, R.S. Somerville, E. Gallo, R.C. Hickox, et al.), Astrophys. J. **831(2)**, 203 (2016).
- 25. Прохоренко, Сазонов (S. Prokhorenko and S. Sazonov), arXiv e-prints arXiv:2111.07422 (2021).
- 26. Рейнес, Волонтери (A.E. Reines and M. Volonteri), Astrophys. J. **813(2)**, 82 (2015).
- 27. Робертс, Хайнес (M.S. Roberts and M.P. Haynes), Ann. Rev. Astron. Astrophys. **32**, 115 (1994).
- 28. Сабурова и др. (A.S. Saburova, I.V. Chilingarian, A.V. Kasparova, O.K. Sil'chenko, K.A. Grishin, I.Y. Katkov, et al.), MNRAS **503(1)**, 830 (2021).
- 29. Сазонов и др. (S.Y. Sazonov, A. Lutovinov, and R.A. Krivonos), Astron. Lett. **40(2-3)**, 65 (2014).
- 30. Сазонов и др. (S. Sazonov, S.P. Willner, A.D. Goulding, R. C. Hickox, V. Gorjian, M.W. Werner, et al.), Astrophys. J. **757(2)**, 181 (2012).

- 31. Субраманьян и др. (S. Subramanian, S. Ramya, M. Das, K. George, T. Sivarani, and T.P. Prabhu), MNRAS 455(3), 3148 (2016).
- 32. Сюняев и др. (Ř. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al.), Astron. Astrophys. **656**, A132 (2021).
- 33. Ферре-Матё и др. (A. Ferré-Mateu, M. Mezcua, and R.S. Barrows), MNRAS **506(4)**, 4702 (2021).
- 34. Холмберг (E. Holmberg), Meddelanden fran Lunds Astronomiska Observatorium Serie II **136**, 1 (1958).
- 35. Цукер и др. (D.B. Zucker, V. Belokurov, N.W. Evans, J.T. Kleyna, M.J. Irwin, M.I. Wilkinson, et al.), Astrophys J **650(1)**, L41 (2006).
- 36. Чибукас и др. (K. Chiboucas, B.A. Jacobs, R.B. Tully, and I.D. Karachentsev), Astron. J. **146(5)**, 126 (2013).

- 37. Чилингарян и др. (I.V. Chilingarian, I.Y. Katkov, I.Y. Zolotukhin, K.A. Grishin, Y. Beletsky, K. Boutsia, et al.), Astrophys. J. **863(1)**, 1 (2018).
- 38. Чуразов и др. (E. Churazov, R. Sunyaev, J. Isern, J. Knödlseder, P. Jean, F. Lebrun, et al.), **512(7515)**, 406 (2014).
- 39. Шрамм и др. (M. Schramm, J.D. Silverman, J.E. Greene, W.N. Brandt, B. Luo, Y.Q. Xue, et al.), Astrophys. J. **773(2)**, 150 (2013).
- 40. Вакулер и др. (G. de Vaucouleurs, A. de Vaucouleurs, J. Corwin, Herold G., R.J. Buta, G. Paturel, and P. Fouque), *Third Reference Catalogue of Bright Galaxies* (1991).